Math, asked by swamisiddharth0365, 8 months ago

find the product of (x - 1/x) , (x+1/x) , (x^2+1/x^2), (x^4+1/x^4)​

Answers

Answered by chhayadokh15
6

using the identity (a+b)(a-b)=a^2 b^2 in all cases

( \frac{x + 1}{x} )( \frac{x - 1}{x} )( {x}^{2}  +  \frac{1}{  {x}^{2}  })( {x}^{4}  +  \frac{1}{ {x}^{4} } )

 = ( {x}^{2}  -  \frac{1}{ {x}^{2} } )( {x}^{2}  +  \frac{1}{ {x}^{2} } )( {x}^{2}  +  \frac{1}{ {x}^{2} } )

 = ({( {x}^{2} })^{2}  - (  \frac{1}{ {x}^{2} }  {)}^{2}  )({x}^{4}  +  \frac{1}{ {x}^{4} } )

 = ( {x}^{4}  -  \frac{1}{ {x}^{4} } )( \frac{x + 1}{ {x}^{4} } )

 = ( {x}^{4}{)}^{2}  - ( \frac{1}{ {x}^{4} }  {)}^{2}

 =  >  {x}^{2}  -  \frac{1}{ {x}^{8} }

HOPE IT HELPS YOU

Similar questions