English, asked by devsethu, 9 months ago

find the product of zeros of the polynomial -2x*x+5x+10

Answers

Answered by amitkumar44481
23

Solution :

We have, Polynomial.

  \tt \mapsto- 2 {x}^{2}  + 5x + 10.

  \tt \mapsto 2 {x}^{2}   -  5x  - 10.

Let Compare with General formula.

  \tt\dagger \:  \:  \:  \:  \: a {x}^{2}  + bx + c.

 \tt where \: as \:  \red{a \neq 0.}

Now,

  • a = 2.
  • b = -5.
  • c = -10.

  \tt \dagger  \:  \:  \:  \:  \: x =  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4a} }{2a}

  \tt  \mapsto x =  \dfrac{ 5 \pm \sqrt{ {( - 5)}^{2}  - 4 \times 2 \times  - 10 } }{4}

  \tt  \mapsto x =  \dfrac{ 5 \pm \sqrt{ {25  + 80} } }{4}

  \tt  \mapsto x =  \dfrac{ 5 \pm \sqrt{ {105} } }{4}

Therefore, the value of given polynomial be x = 5 + √105 /4 and x = 5 - √105 /4.

Answered by Anonymous
7

Explanation:

Solution :

We have, Polynomial.

2 {x}^{2} + 5x + 10.↦−2x

2

+5x+10.

\ 2 {x}^{2} - 5x - 10.↦2x

2

−5x−10.

Let Compare with

Similar questions