Math, asked by arbanehami545, 4 months ago

Find the product.
2  \frac{5}{4}    \times 8

Answers

Answered by Anonymous
5

AnswEr-:

  • \boxed{\sf{The\:product\:of\:2\dfrac{5}{4}\times 8 = \frak{26}}}

Explanation-:

  • Find the product of -:

  • \sf{2 \dfrac{5}{4} \times 8}

\underline{\mathrm{\: Solution \:for\:question \: \:\:-: }}

  • \longrightarrow{\sf{2 \dfrac{5}{4} \times 8}}

As we know that -:

  • \sf{\star{2 \dfrac{5}{4} = \dfrac{13}{4} }}

  • \longrightarrow{\sf{\dfrac{13}{4} \times 8}}

  • \longrightarrow{\sf{ \dfrac{13}{\cancel{4}} \times \cancel{8}}}

  • \longrightarrow{\sf{ 13 \times 2}}

  • \longrightarrow{\sf{26}}

Hence ,

  • \boxed{\sf{The\:product\:of\:2\dfrac{5}{4}\times 8 = \frak{26}}}

_________________________________

More To know-:

  • Fraction rules :

\boxed{\begin{minipage}{6 cm}\bf{\dag}\:\:\underline{\textsf{Fraction Rules :}}\\\\\bigstar\:\:\sf\dfrac{A}{C} + \dfrac{B}{C} = \dfrac{A+B}{C} \\\\\bigstar\:\:\sf{\dfrac{A}{C} - \dfrac{B}{C} = \dfrac{A-B}{C}}\\\\\bigstar\:\:\sf\dfrac{A}{B} \times \dfrac{C}{D} = \dfrac{AC}{BD}\\\\\bigstar\:\:\sf\dfrac{A}{B} + \dfrac{C}{D} = \dfrac{AD}{BD} + \dfrac{BC}{BD} = \dfrac{AD+BC}{BD} \\\\\bigstar\:\:\sf\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{AD}{BD} - \dfrac{BC}{BD} = \dfrac{AD-BC}{BD}\\\\\bigstar \:\:\sf \dfrac{A}{B} \div \dfrac{C}{D} = \dfrac{A}{B} \times \dfrac{D}{C} = \dfrac{AD}{BC}\end{minipage}}

_________________________________

Note

Answered by Anonymous
22

Answer:

\begin{gathered}\begin{gathered}\sf\dashrightarrow \frac{4x + 2}{x + 2} = \frac{4}{5} \\ \dashrightarrow \sf5(4x + 2) = 4(x + 2) \\ \sf\dashrightarrow 20x + 10 = 4 x + 8 \\ \sf\dashrightarrow 20x - 4x = 8 - 10 \\ \sf\dashrightarrow 16x = - 2 \\ \sf\dashrightarrow x = \frac{ - 2}{16} \\ \sf\dashrightarrow x = \frac{ - 1}{8} \end{gathered} \end{gathered}

Similar questions