Math, asked by chandrakuiry867, 1 day ago

find the product
( \frac{3x }{2}  + 3) \: and \: ( \frac{3x}{3}  - 3)

Answers

Answered by IIMrVelvetII
40

Answer: \sf \frac{ {3x}^{2} }{2} -  \frac{15x}{2} - 9

Step-by-step explanation:

\sf→ (\frac{3x}{2} + 3) \times (\frac{3x}{3} - 3)

Multiplying with both numbers,

\sf→ \frac{3x}{2}( \frac{3x}{3} - 3) + 3( \frac{3x}{3} - 3)

\sf→ \frac{{ \cancel{9}x}^{2}}{ \cancel{6}} - \frac{9x}{2} + \frac{9x}{3} - 9

Taking LCM of 2 and 3, i.e 6,

\sf→ \frac{ {3x}^{2} }{2} -  \frac{27x + 18x}{6} - 9

\sf→ \frac{ {3x}^{2} }{2} -  \frac{ \cancel{45}x}{ \cancel{6}} - 9

\sf→ \frac{ {3x}^{2} }{2} -  \frac{15x}{2} - 9

Hence the product of \sf \frac{3x}{2} + 3 and \sf \frac{3x}{2} - 3 is

\sf→ \frac{ {3x}^{2} }{2} -  \frac{15x}{2} - 9.

Similar questions