Math, asked by aadarshraj164, 7 months ago

find the product using identity
(p²+16) (p²-¼) ​

Answers

Answered by Anonymous
10

Given :

  •  ( p^2 + 16 ) ( p^2 - \frac{1}{4} )

To find :

  • Product of  ( p^2 + 16 ) ( p^2 - \frac{1}{4} )

According to the question :

 ( p^2 + 16 ) ( p^2 - \frac{1}{4} )

 [ p^2 × ( p^2 - \frac{1}{4} ) ] + [ 16 × ( p^2 - \frac{1}{4} )

 [ p^{( 2 + 2 )} - ( p^2 × 1 / 4 ) ] + [ ( 16 × p^2 ) - ( 16 × \frac{1}{4} ) ]

 p^4 - \frac{1}{4}p^2 + 16p^2 - \frac{16}{4}

 p^4 - \frac{1}{4}p^2 + 16p^2 - 4

 p^4 + \frac{[ ( 16 × 4 ) - 1 ]}{4} p^2 - 4

 p^4 + \frac{[ ( 64 - 1 ) p^2 ]}{4} - 4

\bold {p^4 + \frac{63}{4} p^2 - 4}

So, It's Done !!

Answered by Anonymous
118

Given:

\sf \bull ( {p}^{2}  + 16)( {p}^{2}  -  \frac{1}{4} )

Find:

\sf \bull solve \: using \: suitable \: identity

Solution:

we, have

\sf \to ( {p}^{2}  + 16)( {p}^{2}  -  \frac{1}{4} )

 \sf by \: using  \: (x + a)(x + b) =  {x}^{2}  + (a + b)x + ab

So,

\sf  : \implies ( {p}^{2}  + 16)( {p}^{2}  -  \frac{1}{4} ) \\  \\

 \sf  : \implies { ({p}^{2}) }^{2}  + (16+ ( \frac{ - 1}{4} )) {p}^{2}  + (16) \times ( \frac{ - 1}{4} ) \\  \\

 \sf  : \implies {p }^{4}  + (16 - \frac{ 1}{4}) {p}^{2}  + ( \frac{ - 16}{4} ) \\  \\

 \sf  : \implies {p }^{4}  + (\frac{64 - 1}{4}) {p}^{2}     - \frac{ 16}{4} \\  \\

 \sf  : \implies {p }^{4}  + (\frac{63}{4}) {p}^{2}     - \frac{ 16}{4} \\  \\

 \sf  : \implies {p }^{4}  + \dfrac{63}{4}{p}^{2}     - \dfrac{ 16}{4} \\  \\

 \sf  : \implies  \dfrac{4{p }^{4} +  63{p}^{2} - 16}{4} \\  \\

 \sf  : \implies  \dfrac{4{p}^{4}}{4}   +  \dfrac{63{p}^{2} }{4} -  \dfrac{16}{4} \\  \\

 \sf  : \implies  {p}^{4}+  \dfrac{63{p}^{2} }{4} - 4\\  \\

________________

Hence, the answer will be \sf {p}^{4}+  \dfrac{63{p}^{2} }{4} - 4

Similar questions