Math, asked by jayadevbithul1, 1 year ago

Find the product using suitable identity. (x-1/x)(x+1/x)(x2+1/x2)(x4+1/x4)

Answers

Answered by Princekuldeep
128
Here is the answer hope so it will be helpful
Attachments:

jayadevbithul1: Thank you
Answered by pulakmath007
11

\displaystyle \sf{  \bigg(  {x}^{}  -  \frac{1}{ {x}^{} } \bigg)\bigg(  {x}^{}   +  \frac{1}{ {x}^{} } \bigg)\bigg(  {x}^{2}   +  \frac{1}{ {x}^{2} } \bigg)\bigg(  {x}^{4}   +  \frac{1}{ {x}^{4} } \bigg)  } =  {x}^{8}  -  \frac{1}{ {x}^{8} }

Given :

\displaystyle \sf{  \bigg(  {x}^{}  -  \frac{1}{ {x}^{} } \bigg)\bigg(  {x}^{}   +  \frac{1}{ {x}^{} } \bigg)\bigg(  {x}^{2}   +  \frac{1}{ {x}^{2} } \bigg)\bigg(  {x}^{4}   +  \frac{1}{ {x}^{4} } \bigg)  }

To find :

Simplify the given expression

Formula :

a² - b² = ( a + b ) ( a - b )

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{  \bigg(  {x}^{}  -  \frac{1}{ {x}^{} } \bigg)\bigg(  {x}^{}   +  \frac{1}{ {x}^{} } \bigg)\bigg(  {x}^{2}   +  \frac{1}{ {x}^{2} } \bigg)\bigg(  {x}^{4}   +  \frac{1}{ {x}^{4} } \bigg)  }

Step 2 of 2 :

Simplify the expression

\displaystyle \sf{  \bigg(  {x}^{}  -  \frac{1}{ {x}^{} } \bigg)\bigg(  {x}^{}   +  \frac{1}{ {x}^{} } \bigg)\bigg(  {x}^{2}   +  \frac{1}{ {x}^{2} } \bigg)\bigg(  {x}^{4}   +  \frac{1}{ {x}^{4} } \bigg)  }

\displaystyle \sf{   = \bigg \{  {(x)}^{2}   - {\bigg( \frac{1}{ {x}^{} } \bigg) }^{2} \bigg \} \bigg(  {x}^{2}   +  \frac{1}{ {x}^{2} } \bigg)\bigg(  {x}^{4}   +  \frac{1}{ {x}^{4} } \bigg)  }

\displaystyle \sf{   = \bigg(  {x}^{2}    -  \frac{1}{ {x}^{2} } \bigg) \bigg(  {x}^{2}   +  \frac{1}{ {x}^{2} } \bigg)\bigg(  {x}^{4}   +  \frac{1}{ {x}^{4} } \bigg)  }

\displaystyle \sf{   = \bigg \{  {( {x}^{2} )}^{2}   - {\bigg( \frac{1}{ {x}^{2} } \bigg) }^{2} \bigg \} \bigg(  {x}^{4}   +  \frac{1}{ {x}^{4} } \bigg)  }

\displaystyle \sf{   = \bigg(  {x}^{4}    -  \frac{1}{ {x}^{4} } \bigg) \bigg(  {x}^{4}   +  \frac{1}{ {x}^{4} } \bigg)  }

\displaystyle \sf{   = \bigg \{  {( {x}^{4} )}^{2}   - {\bigg( \frac{1}{ {x}^{4} } \bigg) }^{2} \bigg \}   }

\displaystyle \sf{   =   {x}^{8}   -  \frac{1}{ {x}^{8} }  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. divide : (4x²- 100) ÷ 6(x+5)

https://brainly.in/question/15559404

2. Find the value of the expression a² – 2ab + b² for a = 1, b = 1

https://brainly.in/question/28961155

Similar questions