Math, asked by aleena37949, 8 months ago

Find the product using suitable identity : ( x^2/(3 ) + 4y ) ( x^2/3 – 4y )
Find the product of ( 3p^2 – 2pq + 2q^2 ) and ( 2p – 3q )
Evaluate (2.2)^2 using suitable identity

Answers

Answered by rohitkhajuria90
1

Find the product using suitable identity : ( x^2/(3 ) + 4y ) ( x^2/3 – 4y )

(  \frac{ {x}^{2} }{3}  + 4y ) (  \frac{ {x}^{2} }{3} – 4y ) \\  using \: property \:  {a -  {b}^{2} }^{2}  = (a + b)(a - b)  \: hence \\ (  \frac{ {x}^{2} }{3}  + 4y ) (  \frac{ {x}^{2} }{3} – 4y ) =   { (\frac{ {x}^{2} }{3}) }^{2}  -  {(4y)}^{2}  \\  =  \frac{ {x}^{4} }{9}  - 16 {y}^{2}

Find the product of ( 3p^2 – 2pq + 2q^2 ) and ( 2p – 3q )

( 3p^2 – 2pq + 2q^2 )  \times  ( 2p – 3q )  \\  = 6 {p}^{3}  - 3 {p}^{2} q - 4 {p}^{2} q + 6p {q}^{2}  + 4p {q}^{2}  - 6 {q}^{3}  \\  = 6 {p}^{3}  - 7 {p}^{2} q + 10p {q}^{2}  - 6 {q}^{3}

Evaluate (2.2)^2 using suitable identity

(2.2)^2 =  {(2 + 0.2)}^{2}   \\  =  {2}^{2}  +  {(0.2)}^{2}  + 2 \times 2 \times 0.2 \\  = 4 + 0.04 + 0.8 \\  = 4.84

Similar questions