Find the product using sutiable identity : (2x - y + 3z) (4x² + y² + 9z² + 2xy + 3yz - 6xz)
Answers
Answered by
3
Answer:
(2x−y+3z)(4x²+y²+9z²+2xy+3yz−6xz)
=(2x+−y+3z)(4x²+y²+9z²+2xy+3yz+−6xz)
=(2x)(4x²)+(2x)(y²)+(2x)(9z²)+(2x)(2xy)+(2x)(3yz)+(2x)(−6xz)+(−y)(4x²)+(−y)(y²)+(−y)(9z²)+(−y)(2xy)+(−y)(3yz)+(−y)(−6xz)+(3z)(4x²)+(3z)(y²)+(3z)(9z²)+(3z)(2xy)+(3z)(3yz)+(3z)(−6xz)
=8x³+2xy²+18xz²+4x²y+6xyz−12x²z−4x²y−y³−9yz²−2xy²−3y²z+6xyz+12x²z+3y²z+27z³+6xyz+9yz²−18xz²
=8x³+18xyz−y³+27z³
Answered by
4
hope it works
.
.
.
.
.
.
plzzzz give me thnx
Attachments:
Similar questions