find the product (x+5)(x+6)-(x-3)(x+7)
Answers
Answered by
0
Answer:
Step-by-step explanation:
(x−5)(x−7)(x+6)(x+4)=504
{(x−5)(x+4)}{(x−7)(x+6)}=504
(x
2
−x−20)(x
2
−x−42)=504
Put x
2
−x=t
(t−20)(t−42)=504
t
2
−62t+840=504
t
2
−62t+336=0
t
2
−6t−56t+336=0
t(t−6)−56(t−6)=0
(t−56)(t−6)=0
t=56,6
x
2
−x=t
For t=56
x
2
−x=56
x
2
−x−56=0
x
2
−8x+7x−56=0
x(x−8)+7(x−8)=0
(x+7)(x−8)=0
x=−7,8
For t=6
x
2
−x=6
x
2
−x−6=0
x
2
−3x+2x−6=0
x(x−3)+2(x−3)=0
(x+2)(x−3)=0
x=−2,3
so the values of x are −7,8,−3 and 2
Answered by
2
Answer:
(x+5)(x+6)-(x-3)(x+7)
x²+(5+6)x+(5*6)-{x²+(-3+7)x+(-3*7)}
x²+11x+30-(x²+4x-21)
x²+11x+30-x²-4x+21
5x+51
hope it helps you...
Similar questions