Math, asked by sushmithar505, 6 months ago

find the products of zeroes of the polynomials p(x) = x²+3x+2​

Answers

Answered by Anonymous
25

\bf{\underline{Given:-}}

\sf{p(x) = x^2 + 3x + 2}

\bf{\underline{To\:Find:-}}

Product of zeroes.

\bf{\underline{Solution:-}}

\sf{p(x) = x^2 + 3x + 2 = 0}

\sf{\underline{By\:splitting\:the\:middle\:term}}

= \sf{x^2 + 2x + x + 2 = 0}

= \sf{x(x+2)+1(x+2)}

= \sf{(x+2)(x+1)}

Either,

\sf{x+2=0}

=> \sf{x = -2}

Or,

\sf{x+1=0}

=> \sf{x=-1}

\sf{\therefore} The zeroes of \sf{p(x)=x^2+3x+2} are -2 and -1

Hence,

Product of zeroes = \sf{-2\times -1} = 2

\bf{\underline{Verification:-}}

\sf{\underline{Sum\:of\:zeroes} = \dfrac{-Cofficient\:of\:x}{Coefficient\:of\:x^2}}

\sf{(-2) + (-1) = \dfrac{-3}{1}}

= \sf{-2-1 = -3}

= \sf{-3=-3} [Verified]

\sf{\underline{Product\:of\:zeroes} = \dfrac{Constant\:term}{Coefficient\:of\:x^2}}

\sf{-2\times-1 = \dfrac{2}{1}}

= \sf{2 = 2} [Verified]

Answered by ItzBrainlyKing222
1

x^2 + 3x + 2

= x^2 + x + 2x + 2

= x(x+1)+2(x+1)

= (x+1)(x+2)

x = -1

x = -2

Product = -2×-1 = 2 (Answer)

Please mark as brainliest

Similar questions