Math, asked by skj111111, 1 year ago

find the Pythagorean triplet whose largest member is 65

Answers

Answered by DevilDoll12
52
HEYA!
-------

-----------------------------------------------------------------------------------------------------
✴PYTHAGOREAN TRIPLET ✴
-----------------------------------------------------------------------------------------------------

 =  > a \: pythagorean \: triplet \: is \: represented \: by \: 2m \:  \: m {}^{2}  + 1 \:  \: and \: m {}^{2}  - 1
hence \: the \: largest \: member \: is \: m {}^{2}  + 1
 =  > m {}^{2}  + 1 = 65 \\  \\  = m {}^{2}  = 64 \\  \\  =  > m = 8 \\  \\  =  > 2m = 8 \times 2 \\  \\  = 16 \\  \\ m {}^{2}  - 1 = 64 - 1 = 63
✨Hence the triplet is 65 , 16 and 63

----------------------------------------------------------------------------------------------------

----------------------------------------------------
Answered by HappiestWriter012
28

The required Pythagorean triplet is 16, 63, 65.

m, n, p form a Pythagorean triplet if,

m² + n² = p²

2m, m² - 1, m² + 1 make a Pythagorean triplet.

⇒(2m)² + (m²-1)²

⇒ 4m² + (m²)² + 1 - 2m²

⇒ (m²)² + (1)² + 2(m²)(1)

⇒ (m² + 1)²

So, 2m, m² - 1, m² + 1 form a Pythagorean triplet where m² + 1 is the largest number.

Given,

Largest number is 65

⇒ m² + 1 = 65

⇒m² = 65 - 1

⇒ m² = 64

⇒ m = 8 ( Considering only positive value).

Now

Pythagorean triplet with m = 8,

⇒ 2m = 2(8) = 16

⇒m² - 1 = 8² - 1 = 63

⇒m² + 1 = 8² + 1 = 65

Therefore, 16, 63, 65 is a Pythagorean triplet with largest number as 65.

Similar questions