find the Pythagorean triplet whose largest member is 65
Answers
Answered by
52
HEYA!
-------
-----------------------------------------------------------------------------------------------------
✴PYTHAGOREAN TRIPLET ✴
-----------------------------------------------------------------------------------------------------
✨Hence the triplet is 65 , 16 and 63
----------------------------------------------------------------------------------------------------
----------------------------------------------------
-------
-----------------------------------------------------------------------------------------------------
✴PYTHAGOREAN TRIPLET ✴
-----------------------------------------------------------------------------------------------------
✨Hence the triplet is 65 , 16 and 63
----------------------------------------------------------------------------------------------------
----------------------------------------------------
Answered by
28
The required Pythagorean triplet is 16, 63, 65.
m, n, p form a Pythagorean triplet if,
m² + n² = p²
2m, m² - 1, m² + 1 make a Pythagorean triplet.
⇒(2m)² + (m²-1)²
⇒ 4m² + (m²)² + 1 - 2m²
⇒ (m²)² + (1)² + 2(m²)(1)
⇒ (m² + 1)²
So, 2m, m² - 1, m² + 1 form a Pythagorean triplet where m² + 1 is the largest number.
Given,
Largest number is 65
⇒ m² + 1 = 65
⇒m² = 65 - 1
⇒ m² = 64
⇒ m = 8 ( Considering only positive value).
Now
Pythagorean triplet with m = 8,
⇒ 2m = 2(8) = 16
⇒m² - 1 = 8² - 1 = 63
⇒m² + 1 = 8² + 1 = 65
Therefore, 16, 63, 65 is a Pythagorean triplet with largest number as 65.
Similar questions