Math, asked by razaalikhan1211, 11 months ago

Find the Quaderatic polynomial whose roots are
3+√5 and 3-√5​

Answers

Answered by amitkumar44481
6

Answer:

 \:  \:  \tt{K( {x}^{2} -6x+4.)} \\  \\

Explanation:

 \:  \:  \:  \:  \:  \:  \tt{Let \:  \alpha \: and \:  \beta   = 3 \pm \sqrt{5} .}

So,

Sum of, it's Zeros.

 \tt{ \:  \:  \:  \alpha  +  \beta  = 3 +   \cancel{\sqrt{5}}  + 3 -   \cancel{\sqrt{5}} .}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt { = 6.} \\  \\

Product of , it's Zeros.

 \:  \:  \:  \tt{ \alpha  \times  \beta  = 3 +  \sqrt{5}  \times 3 -  \sqrt{5} . }

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \:  = 4. \\  \\

Now, Putting value Sum and Product be S , P respectively.

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{K( {x}^{2}  -  sx + p. )}

 \leadsto \tt{K( {x}^{2}  - 6x + 4. )} \\  \\  \\

Let's Verify,

 \tt \: We  \: have  \: equation,

  \:  \:  \:  \tt{x}^{2}  - 6x + 4. \\  \\

  \:  \:  \: \tt{d =  {b}^{2}  - 4ac.}

 \:  \:  \:  \:  \:  \: \tt =   { - 6}^{2}  - 4 \times 4 \times 1.

 \:  \:  \:  \:  \:  \:   \tt= 36 - 16.

 \:  \:  \:  \:  \:  \:  \tt  = 20. \\  \\

 \tt x =  \frac{6 \pm \sqrt{20} }{2}

 \:  \:  \:   \tt=  \frac{6 \pm 2\sqrt{5} }{2}

 \:  \:  \:  \tt =  \frac{ \cancel2(3 \pm \sqrt{5} )}{ \cancel2}

 \tt x= 3 \pm \sqrt{5} .

Therefore, The value both zeros be,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \large\tt  \alpha  = 3 +  \sqrt{5}  .\\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\tt\beta  = 3 -  \sqrt{5} .

Answered by Anonymous
17

AnswEr:

our Quadratic Polynomial is x² - 6x + 4.

ExplanaTion:

Given zeroes :

  • 3 + √5
  • 3 - √5

To find :

  • Quadratic polynomial

Solution :

Sum of zeroes = \sf{3\:+\:{\cancel{\sqrt{5}}}\:+\:3\:-\:{\cancel{\sqrt{5}}}}

: \implies Sum of zeroes = 3 + 3

: \implies Sum of zeroes = 6

\therefore Sum of given zeroes is 6.

\rule{100}1

Product of zeroes = ( 3 + √5 ) ( 3 - √5 )

We know that,

\large{\boxed{\red{\sf{(a+b)(a-b)\:=\:a^2\:-\:b^2}}}}

: \implies Product of zeroes = (3)² - (√5)²

: \implies 9 - 5

: \implies 4

\rule{200}2

We also know that,

Quadratic polynomial = x² - Sx + P

Where, S refers to sum of zeroes and P refers to product of zeroes.

: \implies Quadratic Polynomial = x² - 6x + 4

Hence, our Quadratic Polynomial is - 6x + 4.

Similar questions