Math, asked by akshat36006, 2 months ago

find the quadetic polynomial , whoes sum of zero is -3 and product of zero is 5​

Answers

Answered by Anonymous
70

Answer:

{ \large{ \pmb{ \sf{★Given... }}}}

Sum of Zeroes = -3

Product of zeroes = 5

{ \large{ \pmb{ \sf{★To  \: Find... }}}}

Quadratic Polynomial..?

{ \large{ \pmb{ \sf{★Formula  \: Used... }}}}

{ \sf{General  \: Form = k \bigg[ {x}^{2}  -  ( \alpha  +  \beta )x +  \alpha  \beta  \bigg]}}

{ \large{ \pmb{ \sf{★Solution... }}}}

 { \implies{ \sf{k \bigg[ {x}^{2} - (-3) x + 5  \bigg]}}}

 \: { \implies{ \sf{k \bigg[ {x}^{2}  + 3 x + 5  \bigg]}}}

Now Taking K as 1

 \: { \implies{ \sf{1 \bigg[ {x}^{2}  + 3 x + 5  \bigg]}}}

{ \implies{ \sf{ {x}^{2} + 3x + 5 }}}

{ \large{ \pmb{ \sf{★Final  \: Answer... }}}}

x² + 3x + 5 is the required polynomial.

Similar questions