Math, asked by arushrajawat3, 10 months ago

Find the quadratic eq whose roots are 3 and -3

Answers

Answered by Anonymous
4

\huge\red{\underline{\underline{\pink{Ans}\red{wer:}}}}

\sf{x^{2}-9=0 \ is \ the \ required \ quadratic \ equation.}

\orange{Given:}

\sf{The \ roots \ quadratic \ equation \ are}

\sf{\implies{3 \ and \ -3}}

\sf\pink{To \ find:}

\sf{Quadratic \ equation.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Roots \ are \ 3 \ and \ -3}

\sf{Let \ \alpha \ be \ 3 \ and \ \beta \ be \ -3}

\sf{Sum \ of \ roots=\alpha+\beta}

\sf{\alpha+\beta=3+(-3)}

\sf{\therefore{\alpha+\beta=0...(1)}}

\sf{Product \ of \ roots=\alpha×\beta}

\sf{\alpha×\beta=3(-3)}

\sf{\therefore{\alpha×\beta=-9...(2)}}

\sf{Quadratic \ equation \ is}

\sf{\implies{x^{2}-(\alpha+\beta)x+(\alpha×\beta)=0}}

\sf{from \ (1) \ and (2)}

\sf{\implies{x^{2}-0x-9=0}}

\sf{\implies{\therefore{x^{2}-9=0}}}

\sf\purple{\tt{\therefore{x^{2}-9=0 \ is \ the \ required \ quadratic \ equation.}}}

Similar questions