Math, asked by sumitdeshwal99967232, 5 months ago

Find the quadratic equation whose roots

are
2/3
and -1/2

(1) 6.x2 + x + 2 = 0
-2) 6.1² – x-2=0
(3) 16x? -x+2=0​

Answers

Answered by Sankalp050
4

Answer:

\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}

Answered by Anonymous
2

Step-by-step explanation:

sum \:   of \:  zeroes =  \frac{2}{3}  +  (-  \frac{1}{2} ) = \frac{2}{3}  -  \frac{1}{2}  =  \frac{4 - 3}{2}  =  \frac{1}{2}

product \: of \:  zeroes =  \frac{2}{3}  \times ( -  \frac{1}{2} ) =   - \frac{2}{6}

 Quadratic \: equation = x² - (alpha + beta)x + alpha \: x \: beta

 = x² - (1/2)x + (-2/6)

 = 6x² - 3x -2

Similar questions
Math, 5 months ago