Math, asked by ashutosh63, 1 year ago

find the quadratic equation whose roots are 2+√3 and 2-√3

Answers

Answered by Vinay2194970
130

Answ

Step-by-step explanation:

Attachments:
Answered by mysticd
102

Answer:

 Required \: equation:\\x^{2}-4x+1=0

Step-by-step explanation:

Let\:\alpha\:and\:\beta \:are\\ roots \: of \:a \: quadratic\: equation

 Given \: \alpha= 2+\sqrt{3}\\and \: \beta = 2-\sqrt{3}

i) Sum \:of \: roots\\ = \alpha+\beta\\=2+\sqrt{3}+2-\sqrt{3}\\=4

ii) Product \:of \: roots\\ = \alpha \beta\\=(2+\sqrt{3})(2-\sqrt{3})\\=2^{2}-(\sqrt{3})^{2}\\=4-3\\=1

We\:know\:that \\</p><p>Equation \:of \: a \: Quadratic\\eqution \: whose \: roots \:are\:\alpha \\and \: \beta\:is \:x^{2}-(\alpha+\beta)x+\alpha \beta =0

 Now, Required \: equation:\\x^{2}-4x+1=0

•••♪

Similar questions