Math, asked by anchaldubey09, 1 year ago

find the quadratic equation whose roots are the reciprocals of the roots of x^2 + 4x - 10 = 0

Answers

Answered by pulkitraina260ovri2y
107

let \: the \: roots \: of \: given \: eq \: be \:  \alpha  \: and \:  \beta  \\ so \:  \\  \:  \:  \:  \:  \:  \alpha  +  \beta  =  - 4 \\  \:  \:  \:  \:  \:  \alpha  \beta  =  - 10 \\ the \: eq \: with \: roots \:  \frac{1}{ \alpha } and \:  \frac{1}{ \beta } is \\  \:  {x}^{2}  - ( \frac{1}{ \alpha }  +  \frac{1}{ \beta } )x +  \frac{1}{ \alpha  \beta }  = 0 \\  {x}^{2}  - ( \frac{ \alpha  +  \beta }{ \alpha  \beta } )x +  \frac{1}{ \alpha  \beta }  = 0 \\  {x}^{2}  - ( \frac{ - 4}{ - 10} )x +  \frac{1}{ - 10}  = 0 \\   {x}^{2}  -  \frac{2}{5} x -  \frac{1}{10}  = 0 \\ multiply \: whole \: eq \: with \: 10 \\ 10 {x}^{2}  - 4x - 1 = 0
please mark brainliest
Similar questions