Math, asked by baisastha123, 1 year ago

find the quadratic equation whose roots exceed the roots of the quadratic equation x2-2x+3=0 by 2​

Answers

Answered by sarveshdon2004
2

Answer:

x=2

Step-by-step explanation:

=2(2)-2(2)+3

=4-4+3

=0+3

=3

Answered by lublana
4

The  quadratic equation

x^2-6x+11

Step-by-step explanation:

Given quadratic equation

x^2-2x+3=0

Compare it with

ax^2+bx+c=0

a=1,b=-2,c=3

Quadratic formula :

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Using the formula

x=\frac{2\pm\sqrt{(-2)^2-4(1)(3)}}{2}

x=\frac{2\pm\sqrt{4-12}}{2}

x=\frac{2\pm i2\sqrt 2}{2}

x=\alpha=\frac{2+i2\sqrt 2}{2}=2\times \frac{1+i\sqrt 2}{2}=1+i\sqrt 2

x=\beta=\frac{2-i2\sqrt 2}{2}=2\times \frac{1-i\sqrt 2}{2}=1-i\sqrt 2

Let p and q are roots of quadratic equation x^2-(p+q)x+pq

p=1+i\sqrt 2+2=3+i\sqrt 2

q=1-i\sqrt 2+2=3-i\sqrt 2

Substitute the values

x^2-(3+i\sqrt 2+3-i\sqrt 2)x+(3+i\sqrt 2)(3-i\sqrt 2)

x^2-6x+(3^2-(i\sqrt 2)^2)

Using identity:a^2-b^2=(a+b)(a-b)

x^2-6x+(9+2)=x^2-6x+11

By using i^2=-1

Hence, the  quadratic equation

x^2-6x+11

#Learns more:

https://brainly.in/question/8635897:Answered by Bhartisurana

Similar questions