Math, asked by rushi84, 2 months ago

find the quadratic equation whose roots is (3±i√5)/2​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that roots of the quadratic equation are

\rm :\longmapsto\:\dfrac{3 +  \sqrt{5} i}{2}

and

\rm :\longmapsto\:\dfrac{3  -   \sqrt{5} i}{2}

Let assume that,

\rm :\longmapsto\: \alpha  = \dfrac{3 +  \sqrt{5} i}{2}

and

\rm :\longmapsto\: \beta  = \dfrac{3  -   \sqrt{5} i}{2}

Now, Consider

\red{\rm :\longmapsto\: \alpha  +  \beta }

\rm \:  =  \:  \: \dfrac{3 +  \sqrt{5} i}{2} +  \dfrac{3  -  \sqrt{5} i}{2}

\rm \:  =  \:  \: \dfrac{3 +  \sqrt{5} i + 3 -  \sqrt{5}i }{2}

\rm \:  =  \:  \: \dfrac{6}{2}

\rm \:  =  \:  \: 3

\bf\implies \: \alpha  +  \beta  = 3

Now, Consider

\red{\rm :\longmapsto\: \alpha  \beta }

\rm \:  =  \:  \: \dfrac{3 +  \sqrt{5} i}{2}  \:  \:  \times  \:  \:   \dfrac{3  -  \sqrt{5} i}{2}

We know,

\boxed{ \rm{ (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

So, using this identity, we get

\rm \:  =  \:  \:  \dfrac{ {3}^{2}  -   (\sqrt{5} i) {}^{2} }{4}

\rm \:  =  \:  \: \dfrac{9 - 5 {i}^{2} }{4}

\rm \:  =  \:  \: \dfrac{9 + 5}{4}  \:   \:  \:  \:  \:  \:  \:  \: \:  \{ \because \:  {i}^{2}  =  -  \: 1 \}

\rm \:  =  \:  \: \dfrac{14}{4}

\rm \:  =  \:  \: \dfrac{7}{2}

\bf\implies \: \alpha  \beta  \:  =  \:  \: \dfrac{7}{2}

Now, Required Quadratic equation is given by,

\red{\rm :\longmapsto\: {x}^{2} - ( \alpha   + \beta  ) + \alpha  \beta  = 0}

On substituting the values, we have

\rm :\longmapsto\: {x}^{2} - 3x + \dfrac{7}{2}  = 0

can be rewritten as

\rm :\longmapsto\: {2x}^{2} - 6x + 7 = 0

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions