Math, asked by Mounikamoparthi, 1 year ago

find the quadratic equation with real coefficients whose one root is 2+√3

Answers

Answered by anilb446365
57
If 2+√3 is one of the root. The other root must be 2-√3Quadratic equation=x^2-(sum of roots)x+(product of the roots)                              =x^2-(2+√3+2-√3)x+(2+√3)(2-√3)                              =x^2-4x+2^2+(√3)^2-2*2*√3                              =x^2-4x+4+3-4√3                              =x^2-4x+7-4√3
Answered by sharma0420anant
12

Answer:

x2-4x+7-4√3

Step-by-step explanation:

If 2+√3 is one of the root.

The other root must be

2-√3Quadratic equation=x^2-(sum of roots)x+(product of the roots)                             

=x^2-(2+√3+2-√3)x+(2+√3)(2-√3)                             

=x^2-4x+2^2+(√3)^2-2*2*√3                           

  =x^2-4x+4+3-4√3                            

 =x^2-4x+7-4√3

hope it helps :-)

Similar questions