Math, asked by annams2005, 1 year ago

Find the quadratic polynomial each with the given numbers as the sum and
product of its zeroes respectively
1)1,1
2) 4,1

Answers

Answered by Anonymous
6

❣️ Hi ❣️

Here is your answer =>

(vi) 4,1

sum of zeros =4

product of zeros=1

R.P=K{x2-(sum)x+(product)}

=K{x2-(4)x+(1)}

=K{x2-4x+1}

hence,the quadratic polynomial is x2-4x+1

☺️I hope it will help uh☺️

Answered by ShírIey
52

AnswEr:

\bold{\underline{\sf{\pink{\;\;Given:-\;\;}}}}

1) Sum of Zeroes = 1

Product of Zeroes = 1

We know that,

Sum of Zeroes = \sf(\alpha + \beta)

Product of Zeroes = \sf(\alpha\;\beta)

By using the Formula:-

\large{\underline{\boxed{\sf{\red{x^2 - (\alpha + \beta)x + (\alpha\; \beta)}}}}}

:\implies\sf\; x^2 - 1x + 1

:\implies\large{\underline{\boxed{\sf{\red{x^2 - x + 1}}}}}

\rule{150}3

2) Sum of Zeroes = 4

Product of Zeroes = 1

Same as,

:\implies\sf(\alpha + \beta) = 4

:\implies\sf(\alpha\;\beta)= 1

:\implies\sf\;x^2 - 4x + 1

:\implies\large{\underline{\boxed{\sf{\red{x^2 - 4x + 1}}}}}

\rule{150}3

Similar questions