Math, asked by raghupavan419, 4 months ago

find the quadratic polynomial for the zeores 2 and -5​

Answers

Answered by Sen0rita
57

Given : Zeroes of a quadratic polynomial are 2 and -5 respectively.

To Find : The quadratic polynomial.

⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀____________________

As we know that :

 \:

\star \: \underline{\boxed{\mathfrak\purple{quadratic \: polynomial = {x }^{2}  \:   -   (sum \: of \: zeroes)x  \:  + product \: of \: zeroes}}}

 \:

Finding sum of zeroes :

 \:

\sf\implies \: α + β \:  = 2  \:  +  \: ( - 5) \\  \\  \\  \sf\implies \: α + β \:  = 2 \:  -  \: 5 \\  \\  \\  \sf\implies \: \underline{\boxed{\sf\purple{α + β \:  =  \bold{ - 3}}}} \:  \bigstar

 \:

Finding product of zeroes :

 \:

\sf\implies \: α   \times  β \:  = 2  \:   \times  \: ( - 5) \\  \\  \\    \sf\implies \: \underline{\boxed{\sf\purple{α  \times  β \:  =  \bold{ - 10}}}} \:  \bigstar

 \:

✪ Now, put the values in the formula and solve.

 \:

\sf:\implies \: quadratic \: polynomial \:  =  {x}^{2}  - (α + β)x + (α \times β) \\  \\  \\ \sf:\implies \: quadratic \: polynomial \:  = {x}^{2}  - ( - 3) x \:  +  \:  (- 10) \\  \\  \\ \sf:\implies  \: \underline{\boxed{\mathfrak\purple{quadratic \: polynomial \:  = {x}^{2}  + 3x - 10}}} \:\bigstar \\  \\  \\  \\  \sf\therefore{\underline{Hence, \: the \: quadratic \: polynomial \: is \: \bold{ {x}^{2}  + 3x - 10}. }}

Answered by yash1484
0

Answer:

please write proper question

Similar questions