find the quadratic polynomial for the zeroes 1/2?3/2
Answers
Answer:
Given zeroes :-
1 / 3 and -2
Let
\begin{gathered} \alpha = \frac{1}{3 } \\ \end{gathered}
α=
3
1
And
\beta = - 2β=−2
Now,
Sum of the zeroes :-
\begin{gathered} = \alpha + \beta \\ \\ \\ = \frac{1}{3} + ( - 2) \\ \\ \\ = \frac{1 - 6}{3} \\ \\ \\ = \frac{ - 5}{3} \end{gathered}
=α+β
=
3
1
+(−2)
=
3
1−6
=
3
−5
Product of zeroes :-
\begin{gathered} = \alpha \beta \\ \\ \\ = \frac{1}{3} \times - 2 \\ \\ \\ = \frac{ - 2}{3} \end{gathered}
=αβ
=
3
1
×−2
=
3
−2
Now,
Required polynomial is :-
p(x) = x² - (Sum of zeroes)x + Product of zeroes
\begin{gathered}p(x) = {x}^{2} - ( \frac{ - 5}{3} ) + ( \frac{ - 2}{3} ) \\ \\ \\ p(x) = {x}^{2} + \frac{5}{3} - \frac{2}{3} \end{gathered}
p(x)=x
2
−(
3
−5
)+(
3
−2
)
p(x)=x
2
+
3
5
−
3
2
Step-by-step explanation:
if the given zeroes are 1/2 and 3/2
thats means
α=1/2. and β=3/2
therefore required quadratic polynomial is.
f(x)= x^2 -(α+β)x + αβ
f(x)= x^2 -(1/2+3/2)x +1/2.3/2
f(x)= x^2- (4/2)x +3/4
f(x)= x^2 - 2x +3/4 Ans.