Math, asked by lohithchinnu3720, 4 months ago

Find the quadratic polynomial, for the zeroes a, B given in each case

(1) 1/2,3/2​

Answers

Answered by sombirsangwan19551
0

5

Step-by-step explanation:

deyldyirorost cz jfdylufsjtjkyts

Answered by TheWonderWall
6

\large\sf\underline{Answer:-}

  • \sf\:⟹\:x^{2}-2x+\frac{3}{4}=0

\large\sf\underline{Given:-}

\sf\:Two\:roots\:or\:zeroes\:of\:the\:polynomial

  • \sf\:\frac{1}{2}\:and\:\frac{3}{2}

\large\sf\underline{To\:find:-}

  • \sf\:The\:quadratic\:polynomial

\large\sf\underline{Solution :-}

We know :

Formula for quadratic equation is -

\tt\red{\:x^{2}-(sum\:of\:the\:roots)x+(product\:of\:the\:roots)=0}

So, in our case :

\sf\:Sum\:of\:the\:roots

\sf↦\:\frac{1}{2}+\frac{3}{2}

\sf↦\:\frac{1+3}{2}

\sf↦\:\frac{4}{2}

\tt\purple{↦Sum\:of\:the\:roots=\:2}

\sf\:Product\:of\:the\:roots

\sf↦\:\frac{1}{2} \times \frac{3}{2}

\sf↦\:\frac{3}{4}

\tt\purple{↦Product\:of\:the\:roots=\:\frac{3}{4}}

Now substituting the value in our formula :

\tt\red{\:x^{2}-(sum\:of\:the\:roots)x+(product\:of\:the\:roots)=0}

\sf⟹\:x^{2}-(2)x+(\frac{3}{4})=0

\tt\red{⟹\:x^{2}-2x+\frac{3}{4}=0}

‎ ‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎‎ ‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎ ‎ ━━━━━━━━━━━━━━━━

Scroll left to right to view the answer properly!

‎ ‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎‎ ‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎ ‎

  • Thnku :)
Similar questions