Math, asked by chandanab18pgi301020, 10 months ago

find the quadratic polynomial for the zeroes alpha, beta given in each case 1/4,-1​

Answers

Answered by Abhishek474241
10

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • Zeroes of polynomial
  • 1/4 and -1

{\sf{\green{\underline{\large{To\:Find}}}}}

  • Polynomial
  • Relationship between cofficient

{\sf{\pink{\underline{\Large{Explanation}}}}}

Let the zeroes of the polynomial be\tt\alpha=\frac{1}{4}{and}\beta={-1}

Then,

\rightarrow\tt\alpha{+}\beta{=}\frac{-b}{a}=\frac{1}{4}-{1}

=>-3/4

&

\rightarrow\tt\alpha{\times}\beta{=}\frac{c}{a}=\frac{1}{4}\times{-1}

=>-1/4

Here,

a=4

b=-3

C=-1

New polynomial

=>ax²+bc+c

=>4x²-3x-1

Additional Information

\rightarrow\tt\alpha{+}\beta{=}\dfrac{3}{4}

\rightarrow\tt\alpha{+}\beta{=}\dfrac{Cofficient\:of\:X}{Cofficient\:of\:x^2}=

&

\rightarrow\tt\alpha{\times}\beta{=}\dfrac{-1}{4}

\rightarrow\tt{\large\alpha{\times}\beta{=}\dfrac{Constant\:term}{Cofficient\:of\:x^2}}

Hence,relation verified

Answered by Anonymous
2

S O L U T I O N :

\bf{\large{\underline{\bf{Given\::}}}}}

We have α and β,we get;

α = 1/4

β = -1

\bf{\large{\underline{\bf{To\:find\::}}}}}

The quadratic polynomial.

\bf{\large{\underline{\bf{Explanation\::}}}}}

\underline{\mathcal{SUM\:OF\:THE\:ZEROES\::}}}

\mapsto\sf{\alpha +\beta =\dfrac{-b}{a} =\dfrac{Coefficient\:of\:x}{Coefficient\:of\:x^{2} } }\\\\\\\mapsto\sf{\dfrac{1}{4} +(-1)}\\\\\\\mapsto\sf{\dfrac{1}{4} -1}\\\\\\\mapsto\sf{\dfrac{1-4}{4} }\\\\\\\mapsto\sf{\dfrac{-3}{4} }

\underline{\mathcal{PRODUCT\:OF\:THE\:ZEROES\::}}}

\mapsto\sf{\alpha \times \beta =\dfrac{c}{a} =\dfrac{Constant\:term}{Coefficient\:of\:x^{2} } }\\\\\\\mapsto\sf{\dfrac{1}{4} \times (-1)}\\\\\\\mapsto\sf{\dfrac{-1}{4} }

Thus;

\boxed{\bf{The\:quadratic\:polynomial\:required\::}}}}

\mapsto\sf{x^{2} -(sum\:of\:zeroes)x+(product\:of\:zeroes)}\\\\\\\mapsto\sf{x^{2} -\bigg(-\dfrac{3}{4} \bigg)x+\bigg(-\dfrac{1}{4} \bigg)}\\\\\\\mapsto\sf{x^{2} +\dfrac{3}{4} x-\dfrac{1}{4} }\\\\\\\mapsto\bf{x^{2} +3x-1}

Similar questions