Math, asked by kaveen1307, 6 days ago

Find the quadratic polynomial for which the sum of the roots is 7 and product of the roots is 12. *
X²+7x-12
X²+7x+12
X²-7x+12
X²-7x-12

Answers

Answered by Anonymous
77

Answer:

Given :-

  • The sum and product of the roots is 7 and 12 respectively.

To Find :-

  • What is the quadratic polynomial.

Formula Used :-

\clubsuit Quadratic Equation Formula :

\footnotesize\mapsto \sf\boxed{\bold{\pink{x^2 - (Sum\: of\: roots)x + (Product\: of\: roots)}}}

Solution :-

Given :

\bigstar\: \: \bf Sum\: of\: roots\: (\alpha + \beta) =\: 7

\bigstar\: \: \bf Product\: of\: roots\: (\alpha\beta) =\: 12

According to the question by using the formula we get,

\footnotesize\longrightarrow \sf\bold{\green{x^2 - (Sum\: of\: roots)x + (Product\: of\: roots)}}

\footnotesize\longrightarrow \sf\bf x^2 - (\alpha + \beta)x + (\alpha\beta)

\longrightarrow \sf x^2 - (7)x + (12)

\longrightarrow \sf\bold{\red{x^2 - 7x + 12}}

{\small{\bold{\underline{\therefore\: The\: required\: quadratic\: polynomial\: is\: x^2 - 7x + 12\: .}}}}

Hence, the correct options is option no (c) - 7x + 12.

Similar questions