Math, asked by adapavijayasanthi, 2 months ago

Find the quadratic polynomial in each case (i) sum and product of the zeroes respectively
are _1/4 and 1/4
and (ii) for the zeroes a, ß are 2, - 1.​

Answers

Answered by CuteAnswerer
17

IN THE FIRST QUESTION :

GIVEN :

  • \alpha + \beta = \dfrac{-1}{4}

  •  \alpha \beta = \dfrac{1}{4}

TO FIND :

  • Quadratic Polynomial.

FORMULA REQUIRED :

  • \underline{\boxed{\purple{\bf{x^2- \left(\alpha + \beta\right)x + \alpha\beta =0 }}}}

SOLUTION :

  • By substituting the values, \bf{\alpha + \beta =\dfrac{-1}{4}} and \bf{\alpha \beta = \dfrac{1}{4}}

	:\implies {\sf x^2 - \left(\alpha + \beta \right)x + \alpha \beta = 0}\\ \\

:\implies {\sf x^2- (\dfrac{-1}{4} )x+\dfrac{1}{4} =0 }\\ \\

:\implies {\sf x^2+ \dfrac{1}{4}x+\dfrac{1}{4} =0 }\\ \\

:\implies {\sf \dfrac{4x^2 +x + 1}{4} =0 }\\ \\

  • By cross multiplication :

:\implies {\sf 4x^2+x + 1 = 0 \times 4} \\ \\

:\implies{ \underline{ \boxed{ \blue{\bf{ 4 x^2 +x + 1 = 0}}}}}

\huge{\green{\therefore}}Quadratic Polynomial = \bf{ 4x^2 + x + 1 }

IN THE SECOND QUESTION :

GIVEN :

  • \bf{\alpha = 2}

  • \bf{\beta = -1 }

TO FIND :

  • Quadratic Polynomial.

FORMULA REQUIRED :

  • \underline{\boxed{\purple{\bf{x^2- \left(\alpha + \beta\right)x + \alpha\beta =0 }}}}

SOLUTION :

Sum of Zeros :

: \leadsto \alpha + \beta \\ \\

: \leadsto2 + (-1) \\ \\

: \leadsto 2-1 \\ \\

: \leadsto \bf{1}

Product of Zeros :

 : \leadsto \alpha \beta \\ \\

: \leadsto 2 \times (-1)\\ \\

: \leadsto \bf{ -2 }

  • By substituting the values, \bf{\alpha + \beta = 1} and \bf{\alpha \beta = -2}

:\implies {\sf x^2 - \left(\alpha + \beta \right)x + \alpha \beta = 0}\\ \\

:\implies {\sf x^2- \left( 1\right )x+(-2) =0 }\\ \\

: \implies \underline{\boxed{ \purple{\bf{ x ^2 - x - 2 = 0 }}}}

\huge{\green{\therefore}} Quadratic polynomial = \bf{ x ^2 - x -2}


Skyllen: Great!
Similar questions