Math, asked by satyamkumar1110, 10 months ago

find the quadratic polynomial its with the given number as the zeros of the polynomials 3+ √7, 3-√7​

Answers

Answered by dhanalakshmis2524
1

Answer:

Step-by-step explanation:

sum of zeros  = 3 + √7 +3 - √7

                      = 6

product of zeros  = ( 3 +√7) (3 - √7)

                          =  (3)² - (√7)²

                          = 9 - 7

                         = 2

required polynomial  = x² - (sum 0f zeros ) x  + product of zeros

                                 = x² - 6 x + 2

Answered by Avni2348
1

Alpha = 3+✓7 and Beta = 3-✓7

Sum of zeros = (Alpha + Beta) = (3+✓7+3-✓7) = 6

Product of zeros = (Alpha × Beta) = (3+✓7)(3-✓7) = (3)² - (✓7)² = 9-7 = 2.

Therefore,

REQUIRED POLYNOMIAL = X²-(Alpha + Beta)X + Alpah × Beta

=> X²-6X+2

Answered by Avni2348
2

Alpha = 3+✓7 and Beta = 3-✓7

Sum of zeros = (Alpha + Beta) = (3+✓7+3-✓7) = 6

Product of zeros = (Alpha × Beta) = (3+✓7)(3-✓7) = (3)² - (✓7)² = 9-7 = 2.

Therefore,

REQUIRED POLYNOMIAL = X²-(Alpha + Beta)X + Alpah × Beta

=> X²-6X+2

Similar questions