Math, asked by vermaananya860, 5 months ago

find the quadratic polynomial of whose zeroes are 2+underoot 5 and sum of zeroes is 4​

Answers

Answered by mathdude500
0

Answer:

one  \:  zero \:  \alpha   = 2 +  \sqrt{5}  \\ sum \: of \: zeroes \:  \alpha  +  \beta  \:  = 4 \\ 2 +  \sqrt{5}  +  \beta  = 4 \\  \beta  \:  = 4 - 2 -  \sqrt{5}  = 2 -  \sqrt{5}  \\ product \: of \: zeroes \:  \alpha  \beta  = (2 +  \sqrt{5} )(2 -  \sqrt{5} ) = 4 - 5 =  - 1

so \: required \: quadratic \: polynomial \: is \:  \\ f(x) =  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  \\  =  {x}^{2}  - 4x - 1

Similar questions