Math, asked by prabhas49, 9 months ago

find the quadratic polynomial of zeroes (√2+√3).(√2-√3)​

Answers

Answered by harinarayanakancharl
1

Answer:

Step-by-step explanation:

quadratic equation = x^2 - (a+b)x + ab

= x^2 - (2root2)x + 4

Answered by Sharad001
16

Question :-

Find the quadratic polynomial of zeros (√2+√3) ,

(√2 - √3) .

Answer :-

→ x² - 2√2x -1 = 0

Solution :-

We have zeros → (√2+√3) and (√2 - √3) .

We know that ,

if we have zeros a and b ,then quadratic polynomial is -

→ x² - ( sum of zeros )x + product of zeros = 0 .

So ,firstly we will have to find sum of roots and

product of roots .

therefore ,

 \to \sf Sum  \: of  \: zeros =  ( \sqrt{2}  +  \sqrt{3} )</p><p>  + ( \sqrt{2}  -  \sqrt{3} ) \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   = 2 \sqrt{2}  \\  \\  \to \sf product \: of \: roots \:  = ( \sqrt{2}  +  \sqrt{3} )( \sqrt{2}  -  \sqrt{3)}  \\  \\  \boxed{ \because \sf(a + b)(a - b) =  {a}^{2}   -   {b}^{2} }  \:  \\  \\  \to \sf product \: of \: zeros\:  =  {( \sqrt{2}) }^{2}  -  {( \sqrt{3} )}^{2}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 2 - 3 = -  1 \\  \\

hence quadratic polynomial is -

→ x² - (sum of zeros )x + product of zeros = 0

→ x² - 2√2x -1 = 0

Similar questions