find the quadratic polynomial sum and product of whose zeroes are as given also find the zeroes if these polynomial by factorisation. (1) -2√3 ,-9
Answers
EXPLANATION.
Quadratic polynomial whose sum and product are given,
As we know that,
Quadratic Polynomial ⇒ x² - (α + β)x + αβ.
Sum of zeroes of quadratic Equation,
⇒ α + β = -b/a.
⇒ α + β = -2√3.
Product of zeroes of quadratic Equation,
⇒ αβ = c/a.
⇒ αβ = -9.
Put the value in equation, we get.
⇒ x² - (α + β)x + αβ.
⇒ x² - (-2√3)x + (-9).
⇒ x² + 2√3x - 9.
⇒ x² + 2√3x - 9.
As we know that,
⇒ D = b² - 4ac.
⇒ D = (2√3)² - 4(1)(-9).
⇒ D = 12 + 36.
⇒ D = 48.
⇒ x = -b ± √D/2a.
⇒ x = -2√3 ± √48/2.
⇒ x = -2√3 - √48/2 and x = -2√3 + √48/2.
MORE INFORMATION.
Conjugate Roots,
If,
D < 0 ⇒ One Roots = α + iβ other Roots = α - iβ.
D > 0 ⇒ One Roots = α + √β other Roots = α - √β.
Lᴇᴛ :
☆ General form of the quadratic polynomial is
- α & β are the zeroes of the quadratic polynomial.
Gɪᴠᴇɴ :
- α + β = -2√3
- αβ = -9
Tᴏ Fɪɴᴅ :
- The zeroes of the quadratic polynomial.
Cᴀʟᴄᴜʟᴀᴛᴏʀ :
➣ Putting the value of (α + β) & αβ in the above equation, we get
Fᴏʀᴍᴜʟᴀ ᴏғ ǫᴜᴀᴅʀᴀᴛɪᴄ ᴘᴏʟʏɴᴏᴍɪᴀʟ :
[Nᴏᴛᴇ ➛ The symbol of ± indicates that there are two solutions of quadratic equation.]
Wʜᴇʀᴇ,
- a = 1
- b = 2√3
- c = -9
The zeroes of the quadratic polynomial is √3 & -6√3.