Math, asked by MrPrashasst, 1 year ago

find the quadratic polynomial sum of whose zeroes is 2underoot 3 and their product is 2?​

Answers

Answered by shadowsabers03
0

$$Let the polynomial be $\ p(x)=0. \\ \\ $Let the zeroes of the polynomial be$\ \alpha\ \&\ \beta.

\alpha+\beta=2\sqrt{3} \ \ \ \ \ \longrightarrow \ \ \ \ \ (1) \\ \\ $Let$\ \ m=2\sqrt{3} \\ \\ \\ \alpha\beta=2 \\ \\ $Let$\ \ n=2

\therefore\ \alpha-\beta=\sqrt{m^2-4n} \\ \\ \Rightarrow \alpha-\beta=\sqrt{(2\sqrt{3})^2-(4\times 2)} \\ \\ \Rightarrow \alpha-\beta=\sqrt{12-8} \\ \\ \Rightarrow \alpha-\beta=\sqrt{4} \\ \\ \alpha-\beta=2 \ \ \ \ \ \longrightarrow \ \ \ \ \ (2)

(1)+(2) \\ \\ (\alpha+\beta)+(\alpha-\beta)=2\sqrt{3}+2 \\ \\ 2\alpha=2\sqrt{3}+2 \\ \\ \alpha=\frac{2\sqrt{3}+2}{2} \\ \\ \alpha=\sqrt{3}+1

(1)-(2) \\ \\ (\alpha+\beta)-(\alpha-\beta)=2\sqrt{3}-2 \\ \\ 2\beta=2\sqrt{3}-2 \\ \\ \beta=\frac{2\sqrt{3}-2}{2} \\ \\ \beta=\sqrt{3}-1

$$So let's write$\ p(x). \\ \\ \\ p(x)=(x-\alpha)(x-\beta) \\ \\ p(x)=(x-(\sqrt{3}+1))(x-(\sqrt{3}-1)) \\ \\ p(x)=x^2-(\sqrt{3}+1+\sqrt{3}-1)x+(\sqrt{3}+1)(\sqrt{3}-1) \\ \\ p(x)=\bold{x^2-2\sqrt{3}\ x+2}

........................................................................................................................

$$But there's no need to use the above method! \\ \\ Just do the following:

$$Let the polynomial be$\ p(x)=ax^2+bx+c=0. \\ \\ $Let the roots be$\ \alpha\ \&\ \beta.

$$Only assume that coefficient of$\ x^2,\ $i.e.,$\ a,\ $is 1. \\ \\ So we get that,$ \\ \\ \alpha+\beta=-\frac{b}{a}=\frac{-b}{1}=-b=2\sqrt{3}\ \ \ ; \ \ \ b=-2\sqrt{3} \\ \\ $and$ \\ \\ \alpha\beta=\frac{c}{a}=\frac{c}{1}=c=2 \\ \\ \\ \therefore\ $We get easily that$\ p(x)=\bold{x^2-2\sqrt{3}\ x+2=0}

$$When such questions are asked, apply the negative value of the given sum as the coefficient of$\ x,\ $i.e.,$\ b,\ $and the value of the given product as the coefficient of$\ x^0,\ $i.e.,$\ c,\ $by assuming the value of coefficient of$\ x^2,\ $i.e.,$\ a,\ $as 1. \\ \\ \\ That's all!!!

_________________________________________________

$$Thank you. Have a nice day. :-)$ \\ \\ \\ \\ \\ \#adithyasajeevan \\ \\ \\

Similar questions