Math, asked by AKASHJADHAV32004, 1 year ago

find the quadratic polynomial
 \sqrt{3}  \times {x}^{2}  - 8x + 4 \sqrt{3}

Answers

Answered by Sharad001
3

Question :-

Solve this Quadratic polynomial -

 \to \sf  \sqrt{3}  {x}^{2}  - 8x + 4 = 0

Answer :-

 \to  \boxed{\sf \: x = 2 \sqrt{3 \: }  \: or \:  \frac{2}{ \sqrt{3} } } \\

Used formula :-

Here we will use Shridharacharya principle -

if any quadratic equation f(x) = ax² + bx + c = 0

,

 \to \sf \:  x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}  \\

Solution :-

We have ,

 \to \sf \:  \sqrt{3}  {x}^{2}  - 8x + 4 \sqrt{3}  = 0 \\ \sf comparing \: wit h \:  \\  \to \sf \:   a{x}^{2}   + bx + c = 0\\  \\  \to \sf \: a =  \sqrt{3} , b =  - 8 \: and  \: c = 4 \sqrt{3}  \\  \\  \sf \: hence \\  \:   \\  \to \sf \: x =  \frac{ - ( - 8) \pm \sqrt{ {( - 8)}^{2} - 4  \sqrt{3}  \times 4 \sqrt{3}  } }{2 \sqrt{3} }  \\  \\  \to \sf  \: x =  \frac{8 \pm \sqrt{64 - 48} }{2 \sqrt{3} }  \\  \\  \to \sf \: x =  \frac{8 \pm \:  \sqrt{16} }{2 \sqrt{3} }  \\  \\  \to \sf \: x =  \frac{8 \pm \: 4}{2 \sqrt{3} }  \\  \\  \to \sf \:  x =  \frac{4 \pm \: 2}{ \sqrt{3} }  \\  \\  \star \sf \:  case \: (1) \: if \:  \\  \\  \to \sf \: x =  \frac{4 - 2}{ \sqrt{3} }  \\  \\  \to  \:  \boxed{\sf x =  \frac{2 }{ \sqrt{3} } } \\  \\  \star \sf \: case \: (2) \: if \\  \\  \to \sf \:  x =  \frac{4 + 2}{ \sqrt{3} }  \\  \\  \to \sf \:  x =  \frac{6}{ \sqrt{3} }  \\  \\  \to \:  \:  \boxed{ \sf x = 2 \sqrt{3} }

Verification :-

(1) \sf \: when \:x = 2 \sqrt{3}  \\  \\  \to \:  \sqrt{3}  {(2 \sqrt{3}) }^{2}  - 8  \times 2\sqrt{3}  + 4 \sqrt{3}  = 0 \\  \\  \to \:12 \sqrt{3}  - 16 \sqrt{3}  + 4 \sqrt{3}  = 0 \\  \\  \to \: 16 \sqrt{3}  - 16 \sqrt{3}  = 0 \\  \\  \to \: 0 = 0 \\  \\  (2) \sf \: when \: x =  \frac{2}{ \sqrt{3} }  \\  \\  \to \:  \sqrt{3}  {( \frac{2}{ \sqrt{3} }) }^{2}  - 8 \times  \frac{2}{ \sqrt{3} }  + 4 \sqrt{3}  = 0 \\  \\  \to \:  \frac{4 \sqrt{3} }{3}  -  \frac{16}{ \sqrt{3} }  + 4 \sqrt{3}  = 0 \\  \\  \to \:  \frac{4 \sqrt{3} \sqrt{3} - 48 + 4 \sqrt{3}   \times 3 \sqrt{3}  }{3 \sqrt{3} }  = 0 \\  \\  \to \:  \frac{12 - 48 + 36}{3 \sqrt{3} }  = 0 \\  \\  \to \:  \frac{48 - 48}{3 \sqrt{3} }  = 0 \\  \\  \to \: 0 = 0 \\  \\ \large \sf hence \: verified

Similar questions