Math, asked by raja1834, 1 month ago

Find the quadratic polynomial the sum and product of its zeros are -1 by (means ÷ ) 4 & 1 by ( means ÷ ) 3
Sum of class 10th
Don't give wrong answer please
and one request is there please solve this question step by step with explanation​

Answers

Answered by Ꭰɾєαмєɾ
2

Step-by-step explanation:

Answer:-

According to the Question

It is given that ,

Sum of zeros = -1/4

Product of zeros = 1/3

We have to calculate the quadratic polynomial .

As we know that quadratic polynomial when the sum and product of its zeros are given by

f(x) = x² -(sum of zeros)x + product of zeros

Substitute the value we get

→ f(x) = x² -(-1/4)x + 1/3

→ f(x) = x² + (1/4)x + 1/3

So, the required quadratic polynomial is

f(x) = x² + (1/4)x + 1/3

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Extra Information !!

• (a + b)² = a² + b² +2ab

• ( a - b )² = a² + b² -2ab

• ( a² - b² ) = ( a - b ) ( a + b )

• ( a +b +c)² = (a² + b² + c²) + 2(ab + bc +ca)

• (a + b)³ = a³ + b³ + 3ab(a+b)

• (a-b)³ = a³ - b³ -3ab(a-b)

• ( a³ + b³) = (a+b) (a²-ab +b²)

• (a³ - b³) = (a -b) (a² + ab + b²)

Answered by XBarryX
0

Answer:

Answer:

Given :-

The resístance of each resístors is 10 ohm resistors.

To Find :-

What is the maximum resístance make available using two resístors.

Formula Used :-

\clubsuit♣ Equívalent Resístance for series connection :

\begin{gathered}\mapsto \sf\boxed{\bold{\pink{R_{eq} =\: R_1 + R_2\: +\: . . . .\: +\: R_n}}}\\\end{gathered}↦Req=R1+R2+....+Rn

where,

\sf R_{eq}Req = Equívalent Resístance

\sf R_1R1 = Resístance of resístors R₁

\sf R_2R2 = Resístance of resístors R₂

Solution :-

Given :

\begin{gathered}\bigstar\: \rm{\bold{Resistance\: of\: resistors\: (R_1) =\: 10\: \text{\O}mega}}\\\end{gathered}★Resistanceofresistors(R1)=10Ømega

\bigstar\: \rm{\bold{Resistance\: of\: resistors\: (R_2) =\: 10\: \text{\O}mega}}★Resistanceofresistors(R2)=10Ømega

According to the question by using the formula we get,

\longrightarrow \sf R_{eq} =\: R_1 + R_2⟶Req=R1+R2

\longrightarrow \sf R_{eq} =\: 10\: \text{\O}mega + 10\: \text{\O}mega⟶Req=10Ømega+10Ømega

\longrightarrow \sf R_{eq} =\: (10 + 10)\: \text{\O}mega⟶Req=(10+10)Ømega

\longrightarrow \sf R_{eq} =\: (20)\: \text{\O}mega⟶Req=(20)Ømega

\longrightarrow \sf\bold{\red{R_{eq} =\: 20\: \text{\O}mega}}⟶Req=20Ømega

\therefore∴ The maximum resístance is 20 Ω . It is connected by equívalent resístance of series connection.

\begin{gathered}\\\end{gathered}

EXTRA INFORMATION :-

\clubsuit♣ Equívalent Resístance for párallel connection :

\begin{gathered}\mapsto \sf\boxed{\bold{\pink{\dfrac{1}{R_{eq}} =\: \dfrac{1}{R_1} + \dfrac{1}{R_2}\: +\: . . . .\: +\: \dfrac{1}{R_n}}}}\\\end{gathered}↦Req1=R11+R21+....+Rn1

where,

\sf R_{eq}Req = Equívalent Resístance

\sf R_1R1 = Resístance of resístors R₁

\sf R_2R2 = Resístance of resístors R₂

Similar questions