Math, asked by avnisharma222006, 2 months ago

find the quadratic polynomial the sum of the sum and product of whose zeroes are 0 and root 2 respectively​

Answers

Answered by kuvambhutani1612
1

Answer:

x^{2}+√2

Step-by-step explanation:

Sum = 0

Product = root2

Polynomial = x^2-sx+P

= x^2-0+root2

=x^2+root2

Mark me Brainliest pls

Answered by FiercePrince
15

Given that , The sum and Product of zeroes are 0 & √2 , respectively.

Need To Find : The Quadratic Polynomial ?

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━

\qquad \qquad \underline{\pmb{\mathbb{\bigstar \:\:QUADRATIC \:\:POLYNOMIAL \:\::\:}}}\\\\

As , We know that,

\qquad \underline {\boxed {\pmb{ \:\maltese \:Sum \:\: of \:\:zeroes \:\:\purple{ \:(\: \alpha + \beta \;)\:} \:: \: }}}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:+\:\beta \:\Big\} \:\: \\\\\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:+\:\beta \:\Big\}\:\:=\:\:\:\: 0 \\\\\dashrightarrow \underline {\boxed {\pmb{\pink{ \frak { \: \alpha \:+\:\beta \: \:\:=\:\:0 \:\:}}}}}\:\:\bigstar \\\\

⠀AND ,

\qquad \underline {\boxed {\pmb{ \:\maltese \:Product \:\: of \:\:zeroes \:\:\purple{ \:(\: \alpha \beta \;)\:} \:: \: }}}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:\:\beta \:\Big\} \:\: \\\\\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:\:\beta \:\Big\}\:\:=\:\:\:\:\sqrt{2} \\\\ \dashrightarrow \underline {\boxed {\pmb{\pink{ \frak { \: \alpha \:\:\beta \: \:\:=\:\:\sqrt{2} \:\:}}}}}\:\:\bigstar \\\\

Now , As , We know that ,

\qquad \dag\:\:\bigg\lgroup \pmb{\sf \:Quadratic \:Polynomial\:\::\:x^2 \: - \:\{ \:Sum \:of \:zeroes \:\}x \:+ \:\{ \:Product \:of \:zeroes \} \: }\bigg\rgroup \\\\

⠀⠀Here , Sum of Zeroes is α + β & Product of zeroes is α β

\qquad \dashrightarrow \sf \:Quadratic \:Polynomial\:\:=\:x^2 \: - \:\{ \:Sum \:of \:zeroes \:\}x \:+ \:\{ \:Product \:of \:zeroes \} \: \\\\

\qquad \dashrightarrow \sf \:Quadratic \:Polynomial\:\:=\:x^2 \: - \:\{ \:\alpha  + \beta \:\}x \:+ \:\{ \:\alpha \beta \} \: \\\\\qquad \dashrightarrow \sf \:Quadratic \:Polynomial\:\:=\:x^2 \: - \:\{ \:0 \:\}x \:+ \:\{ \:\sqrt{2} \} \: \\\\\qquad \dashrightarrow \sf \:Quadratic \:Polynomial\:\:=\:x^2 \:  \:+ \:\{ \:\sqrt{2} \} \: \\\\\qquad \dashrightarrow \sf \:Quadratic \:Polynomial\:\:=\:x^2 \:  \:+ \: \:\sqrt{2} \: \\\\\dashrightarrow \underline {\boxed {\pmb{\pink{ \frak { \: \:Quadratic \:Polynomial\:\:=\:x^2 \:  \:+ \: \:\sqrt{2} \: \:\:}}}}}\:\:\bigstar \\\\

Similar questions