Math, asked by mcrtechnotrend, 1 day ago

Find the quadratic polynomial , the sum of whose roots is √2 and their product is 1/4

Answers

Answered by Anonymous
41

Answer:

Given :-

  • The sum of whose roots is √2 and their products is 1/4.

To Find :-

  • What is the quadratic polynomial.

Formula Used :-

\clubsuit Quadratic Equation Formula :

\footnotesize\mapsto \sf\boxed{\bold{\pink{x^2 - (Sum\: of\: roots)x + (Product\: of\: roots) =\: 0}}}\\

Solution :-

Given :

\bigstar\: \bf{Sum\: of\: roots\: (\alpha + \beta) =\: \sqrt{2}}\\

\bigstar\: \bf{Product\: of\: roots\: (\alpha\beta) =\: \dfrac{1}{4}}\\

According to the question by using the formula we get,

\small\leadsto \sf\bold{\purple{x^2 - (Sum\: of\: roots)x + (Product\: of\: roots) =\: 0}}\\

\small\longrightarrow \bf{x^2 - (\alpha + \beta)x + (Product\: of\: roots) =\: 0}\\

\small\longrightarrow \sf x^2 - (\sqrt{2})x + \dfrac{1}{4} =\: 0

\small\longrightarrow \sf x^2 - \sqrt{2}x + \dfrac{1}{4} =\: 0

\small\longrightarrow \sf \dfrac{4x^2 - 4\sqrt{2}x + 1}{4} =\: 0

By doing cross multiplication we get,

\small\longrightarrow \sf 4x^2 - 4\sqrt{2}x + 1 =\: 0(4)

\small\longrightarrow \sf\bold{\red{4x^2 - 4\sqrt{2}x + 1 =\: 0}}\\

{\small{\bold{\underline{\therefore\: The\: required\: quadratic\:polynomial\: is\: 4x^2 - 4\sqrt{2}x + 1\: .}}}}\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

EXTRA INFORMATION :-

Quadratic Equation with one variable :

✪ The general form of the equation is ax² + bx + c.

[Note :- ● If a = 0, then the equation becomes to a linear equation.

● If b = 0, then the roots of the equation becomes equal but opposite in sign.

● If If c = 0, then one of the roots is zero.

Nature of Roots :

✪ The discriminant of the equation is - 4ac. Then,

- 4ac = 0, then the roots are real and equal.

- 4ac > 0, then the roots are real and unequal.

- 4ac < 0, then the roots are imaginary and no real roots.

Answered by SparklingBoy
38

-------------------------------

▪Given :-

For a Quadratic Polynomial :

   

  • Sum of Roots = √2

  • Product of Roots = 1/4

-------------------------------

▪To Find :-

  • The Quadratic Polynomial.

-------------------------------

▪Key Point :-

If sum and product Roots of any quadratic polynomial are s and p respectively,

Then,

The quadratic polynomial is given by :-

 \pmb{  {x}^{2}  - s \: x + p}

-------------------------------

▪Solution :-

Here,

  • Sum = s = √2

  • Product = p = 1/4

So,

Required Polynomial should be

  \bf{x}^{2}  - \sqrt{ 2 \:}x + \dfrac{1}{4}

\Large\pink{ :\longmapsto\pmb{4  {x}^{2}  - 4 \sqrt{2}\:x +1}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

-------------------------------

Similar questions