Math, asked by IYINZ5729, 9 months ago

Find the quadratic polynomial , the sum of whose zeroes is square root 2and there product is -12

Answers

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{x^{2}-\sqrt{2}x-12=0}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Sum \: of \: zeroes =  \sqrt{2}  \\  \\  \tt:  \implies Product \: of \: zeroes =  - 12 \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Quadratic \: eqn = ?

• According to given question :

 \tt \circ \: Let \: zeroes \: be \:  \alpha  \: and \:  \beta  \\  \\  \bold{As \: we \: know \: that}  \\  \tt:  \implies Sum \: of \: zeores =  \sqrt{2}  \\   \\  \tt: \implies  \alpha  +  \beta  =  \sqrt{2}   \\  \\   \tt:  \implies Product \: of \: zeores =  - 12 \\  \\   \tt:  \implies  \alpha  \beta  =  - 12 \\  \\  \bold{For \: quadratic \: eqn : } \\  \tt:  \implies  {x}^{2}  - (Sum \: of \: zeroes) x + (Product \: of \: zeroes)=0 \\  \\  \tt:  \implies  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta=0  \\  \\  \tt:  \implies  {x}^{2}  -  \sqrt{2} x  + ( - 12) = 0 \\  \\  \green{\tt:\implies  {x}^{2}  -  \sqrt{2} x - 12 = 0}

Answered by Saby123
2

 \tt{\huge{\red{Hello !!! }}}

QUESTION :

Find the quadratic polynomial , the sum of whose zeroes is square root 2and there product is -12.

SOLUTION :

A Quadratic Polynomial can be expressed as

X^2 - (Sum of Zeroes ) + (Product of Zeroes )

Hence the required Polynomial becomes :

X^2 - √2x - 12.

Similar questions