Math, asked by Anonymous, 2 months ago

Find the quadratic polynomial, the sum of whose zeros is 0 and their product is -1. Hence, find the zeros of the polynomial.

Answers

Answered by MagicalLove
60

Step-by-step explanation:

__________________

 \maltese \:  \large \underline{ \bf{Answer:-}}

Given :

 \bold {• \:  \:  \: S um \:of \:  \: zeroes \:  \: of \:  \: a \:  \: quadratic \:  \: polynomial \:  \: ( \alpha  +  \beta ) = 0 }

 \bold  {• \:  \:  \:product \:  \:of \:  \: zeroes \:  \: of \:  \: a \:  \: quadratic \:  \: polynomial \:  \: ( \alpha  \beta ) =  - 1 }

To Find :

  • Zeroes of the polynomials

Solution :

General form for quadratic equations,

 {\bf{ \boxed{ {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta }}}

we have that ,

 \alpha  +  \beta  = 0

 \alpha  \beta  =  - 1

Substitute the values in the form ,

 \bf \implies \:  {x}^{2}  - (0)x -1

 \implies \bf \:  {x}^{2}  - 1

Next , find the zeroes of the polynomial.

It is in the form (-b²)

° (-b²) = (a+b)(a-b)

 \implies \sf \:  {x}^{2}  -  {1}^{2}</u></strong><strong><u>

 \implies \sf \:(x + 1)(x - 1) = 0

\implies \sf \:x =   - 1 \:  \: and \:  \: 1

° Zeroes of the polynomial is ±1 !!

_______________________

Answered by AbhinavRocks10
13

\bold AnswEr:-

Quadratic polynomial = x² - 1

Zeroes of polynomial = -1 & 1

\rule{200}{1}

Explanation:-

Let the zeroes of polynomial be α & β

Given:-

  • α + β = 0
  • αβ = -1
  • We know the standard form of a quadratic polynomial:-

\star\: \boxed{\boxed{\sf\blue{x^2 - (Sum \: of \: zeros)x + Product\: of\: zeros }}}

Here,

⇒ Polynomial = x² - (0)x + (-1)

⇒ Polynomial = x² - 0x - 1

⇒ Polynomial = x² - 1

Therefore,

\therefore\underline{\textsf{Quadratic polynomial = {\textbf{x$^2$- 1}}}}

\rule{200}{1}

  • We got the quadratic polynomial as x² - 1

  • Now we can find the zeros of polynomial by factorization method:-

⇒ x² - 1 = 0

[We know, a² - b² = (a + b)(a - b) ]

⇒ (x + 1)(x - 1) = 0

⇒ x = -1 or x = 1

Therefore,

\therefore\underline{\textsf{Zeros of polynomial = {\textbf{-1 \&amp; 1 }}}}

Similar questions