Math, asked by anuragsharma8748, 1 year ago

find the quadratic polynomial where zeros are √3+√5 and √5-√3 ?

Answers

Answered by Panzer786
9
Hii ☺ !!


Sum of zeroes = √3 + √5 + √5 - √3 = 2√5.


And,

Product of zeroes = ( √3 + √5 ) ( √5 - √3 ) = (√5)² - (√3)² = 5 - 3 = 2.


Therefore,


Required quadratic polynomial = x²-(sum of zeroes)x + product of zeroes.


=> x² - ( 2√5 ) + 2


=> x² - 2√5 + 2.
Answered by Anonymous
2

The quadratic polynomial whose zeroes are,

5 \sqrt{3} ,5 -  \sqrt{3}

 \alpha , \beta  \: is \: f(x) = k[ {x}^{2} - ( \alpha  +  \beta )x +  \alpha  \times  \beta  ]

where k is any non-zero real no.

THE QUADRATIC POLY POLYNOMIAL WHOSE ZEROES ARE

5 \sqrt{3} ,5 -  \sqrt{3}

 f(x) = k[ {x}^{2} - ( \alpha  +  \beta )x +  \alpha  \times  \beta  ]

 f(x) = k[ {x}^{2} - ( 5  \cancel{ +  \sqrt{3}}  + 5  \cancel{ -  \sqrt{3}} )x +    (5 +  \sqrt{3}   ) (5 -  \sqrt{3}  ) ]

 f(x) = k[ {x}^{2} -10x + ( {5)}^{2}  -  ({ \sqrt{3} )}^{2}  ]

 f(x) = k[ {x}^{2} -10x + (25  - 3)]

 f(x) = k[ {x}^{2} -10x + 22]

so, the QUADRATIC polynomial is

 f(x) = k[ {x}^{2} -10x + 22]

Similar questions