Find The quadratic polynomial whoes zeroes are 3+root5 and 3-root5
Answers
Answered by
8
Hello user
Let's assume the quadratic polynomial to be ax^2 + bcoz + c
So, we can have..
ax^2 + bcoz + c = (x - 3 - 5^1/2)(x - 3 + 5^1/2)
ax^2 + bcoz + c = (x-3)^2 - 5
ax^2 + bcoz + c = x^2 + 9 - 6x - 5
ax^2 + bcoz + c = x^2 - 6x + 4
Since, a = 1 here
So, the quadratic polynomial will be... (x^2 - 6x + 4)
Hope it works
Let's assume the quadratic polynomial to be ax^2 + bcoz + c
So, we can have..
ax^2 + bcoz + c = (x - 3 - 5^1/2)(x - 3 + 5^1/2)
ax^2 + bcoz + c = (x-3)^2 - 5
ax^2 + bcoz + c = x^2 + 9 - 6x - 5
ax^2 + bcoz + c = x^2 - 6x + 4
Since, a = 1 here
So, the quadratic polynomial will be... (x^2 - 6x + 4)
Hope it works
divya1261:
Thank u
Answered by
9
Let the polynomial be ax^2 + bx + c.
(i)
We know that sum of zeroes = -b/a
⇒ 3 + √5 + 3 - √5 = -b/a
⇒ 6 = -b/1
⇒ -b = 6
⇒ b = -6
(ii)
Product of zeroes = c/a
⇒ (3 + √5)(3 - √5) = c/a
⇒ (3)^2 - (√5)^2 = c/1
⇒ 9 - 5 = c
⇒ c = 4.
Therefore, the required quadratic polynomial = ax^2 + bx + c
⇒ x^2 - 6x + 4.
Hope this helps!
Similar questions