Math, asked by aradhnaupadh, 10 months ago

Find the quadratic polynomial whose product and sum of zeros are (-13)/5 and 3/5, respectively.
Here, 3/5 is POSITIVE.
Please could you write it fast? Please.

Answers

Answered by Anonymous
20

GiveN :

  • Sum of zeros = 3/5
  • Product of zeros = -13/5

To Find :

  • Quadratic Equation

Solution :

let the zeroes be α and β ,

⇒ α + β = 3/5

⇒α × β = -13/5

We know that the general form of quadratic equation is :

➠ x² - (sum of zeros)x + Product

⇒x² - (α + β)x + α*β

⇒x² - (3/5)x + (-13/5)

⇒x² - 3/5x - 13/5

⇒(5x² - 5x - 13)/5

Now, we can remove 5 from denominator

\therefore Equation is 5x² - 5x - 13

_______________________________

General Equation : ax² + bx + c

⇒ Sum of zeros = -b/a

⇒ Product of zeros = c/a

• Quadratic Formula :

x = -b± √(b² - 4ac) / 2a


RvChaudharY50: Awesome.
Answered by BloomingBud
38

\blue{\underline{\underline{\tt{Given:}}}}

The product of zeroes = \red{\sf{\frac{-13}{5} }}

The sum of the zeroes = \red{\sf{\frac{3}{5} }}

\blue{\underline{\underline{\tt{To\:be\:found:}}}}

The quadratic polynomial whose product of zeroes = \red{\sf{\frac{-13}{5} }} and sum of the zeroes = \red{\sf{\frac{3}{5} }}.

\yellow{\star} \pink{\underline{\sf{Here\:\: is\:\: the\:\: formula\:\: for\: \:a \:\:quadratic\:\: equation-}}}

\boxed{\bf x^{2}- (sum \:\:of \:\:zeroes)x+(product\:\:of\:\:zeroes)}

=x^{2} - \big( \frac{3}{5} \big) x+  \big( \frac{-13}{5} \big)

=x^{2} - \frac{3x}{5}+ \frac{-13}{5}

= \frac{5x^{2}-3x-13}{5}

= \bf 5x^{2}-3x-13

we can consider \red{\boxed{\bf{5x^{2}-3x-13} }} as required quadratic polynomial because it will also satisfy the given conditions.

\violet{\underline{\sf{Check:}}}

sum of zeroes =  \bf \frac{- \: coefficient\:of\:x}{coefficient\:of\:x^{2}}=\frac{-b}{a} = \frac{-(-3)}{5} =\frac{3}{5}

Product of zeroes = \bf \frac{constant\:\:term}{coefficient\:of\:x^{2}}=\frac{c}{a} = \frac{(-13)}{5} =\frac{-13}{5}


RvChaudharY50: Excellent .
Similar questions