Math, asked by vikrantsonkhla43, 2 months ago

find the quadratic polynomial whose sum and product of the zeros are-2, √3​

Answers

Answered by vipinkumar212003
1

Step-by-step explanation:

\blue{\mathfrak{\underline{\large{Sum \: of \: zeroes}}}:} \\  \alpha + \beta =   - 2 - (i) \\  \alpha  \beta  =  \sqrt{3}  - (ii) \\ \blue{\mathfrak{\underline{\large{Solving \: equation \: (i)}}}:} \\  \alpha  =  - 2 -  \beta  \:  \: or  \: \:  \beta  =  - 2 -  \alpha  \\ \blue{\mathfrak{\underline{\large{Put \: the \: value \: of \:  \alpha \:   or \: \beta }}}:} \\ ( - 2 -  \beta ) \beta  =  \sqrt{3} \:   \: | \:  \:  \alpha ( - 2 -  \alpha ) =  \sqrt{3 }  \\  - 2 \beta  -  { \beta }^{2}  =  \sqrt{3}  \:  \:  \:  \: | \:  \:  - 2 \alpha  -  { \alpha }^{2}  = \sqrt{3}  \\ 0 =  { \beta }^{2}  - 2 \beta  +  \sqrt{3}  \:  \: | \:  \:  0 =  { \beta }^{2}  - 2 \beta  +  \sqrt{3}  \\ \blue{\mathfrak{\rightarrow \: These \: are \: the  \: resulting\: quadratic \: equations. }} \\ \\  \red{\mathfrak{\underline{\huge{hope \: it \: helps \: you }}}} \\  \green{\mathfrak{\underline{\huge{mark \: me \: brainliest}}}}

Similar questions