Math, asked by mrsilent252, 1 month ago

find the quadratic polynomial whose sum of zeroes is √3/2 and product of zeroes is -4​

Answers

Answered by brainlySrijan167
4

Answer:

3x² - 4x + 9 = 0

Step-by-step explanation:

We know that every Quadratic Equation is of form

k [ x² - ( sum of roots) x + (product of roots)], where k is any constant value

Now sum of roots = -4/3 and product of roots = 3

∴ Desired equation will be

k[ x² - (-4/3)x + 3] = 0

Let k = 3 [ LCM of denominators is 3]

3[x² - (4/3)x +3] = 0

3x² - 4x + 9 = 0

Desired Equation is 3x² - 4x + 9 = 0

Answered by jaswasri2006
1

 \large  \red{\bf{given}} \:  :

 \sf \boxed{ \sf \alpha  +  \beta  =  \frac{ \sqrt{3} }{2} } \: and \:  \boxed{ \sf \alpha  \beta  =  - 4}

 \green{ \bf to \:  \:  \:  \: find} \:  :

 \pink{ \bf quadratic \:  \:  \: polynomial \:  \:  \:  \: equation}

 \\  \\

 \large \purple{ \underline{ \underline{  \orange{ \mathfrak{ \:  \: ☢ \:  \: solution \:  \:  \: }}}}} \:  :

 \\  \\

 \bf general \:  \:  \: form \:  \:  :

 \blue{ \overbrace{ {  \underbrace{  \:  \: \boxed{ \pink{ \bf  {x}^{2}  + ( \alpha  +  \beta )x - ( \alpha  \beta ) }} \:  \: }}}}

 \\

 \bf hence \:  \:  \:  \: by \:  \:  \: applying \:  \:  \: values

 \sf the \:  \:  \: equation \:  \: is

 \sf⇒ \:  \:  {x}^{2}  + ( \frac{ \sqrt{3} }{2} )x - ( - 4)

 \sf⇒ \:  \:  {x}^{2}  + ( \frac{ \sqrt{3}x }{2})  + 4

by taking LCM ,

 \bf we \:  \:  \: obtain

 \sf⇒2 {x}^{2}  +  \sqrt{3}  + 8

 \\

 \sf \ast \:  \: the \:  \:  \: equation \:  \:  \: is \:  \:   \boxed{  \orange{\sf  2{x}^{2}  +  \sqrt{3}  + 8}}

Similar questions