Math, asked by krish978138, 10 months ago

find the quadratic polynomial whose zeroes are -2 and -5. verify the relationship between zeroes and cofficient of polynomial​

Answers

Answered by Anonymous
13

\large{\underline{\bf{\purple{Given:-}}}}

  • given zeroes of required polynomial are -2 and -5

\large{\underline{\bf{\purple{To\:Find:-}}}}

  • we need to find the polynomial and also find the relationship between the zeroes and coefficients.

\huge{\underline{\bf{\red{Solution:-}}}}

  • Let α be -2 and β be -5

α + β = -2+(-5)

⠀⠀⠀➝ -7

αβ = -2 × -5

⠀⠀⠀➝ 10

  • p(x) = x²-(α + β)x +αβ

⠀⠀⠀➝ x²-(-7)x +10

⠀⠀⠀➝ x² + 7x + 10

So, the required polynomial is x² + 7x + 10.

Relationship between the zeroes and coefficients:-

Sum of zeroes = coefficient of x /coefficient ofx²

  • (α + β) = - b/a

⠀⠀⠀➝ -7 = -7/1

⠀⠀⠀➝ -7 = -7

Product of zeroes = constant term/coefficient of x²

  • αβ = c/a

⠀⠀⠀➝ 10 = 10/1

⠀⠀⠀➝ 10 = 10

LHS = RHS

Hence relationship is verified

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
3

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{The \ required \ polynomial \ is \ x^{2}+7x+10.}

\sf\orange{Given:}

\sf{\implies{Zeroes \ of \ polynomial \ are \ -2 \ and \ -5}}

\sf\pink{To \ find:}

\sf{Quadratic \ polynomial \ with \ zeroes \ -2 \ and}

\sf{-5.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ \alpha \ be \ -2 \ and \ beta \ be \ -5}

\sf{Sum \ of \ zeroes=-2-5}

\sf{\implies{\therefore{\alpha+\beta=-7...(1)}}}

\sf{Product \ of \ zeroes=-2\times(-5)}

\sf{\implies{\therefore{\alpha\beta=10...(2)}}}

\sf{Quadratic \ polynomial \ is}

\sf{x^{2}-(Sum \ of \ zeroes)x+(Product \ of \ zeroes)}

\sf{...from \ (1) \ and \ (2)}

\sf{\implies{x^{2}+7x+10}}

\sf\purple{\tt{\therefore{The \ required \ polynomial \ is \ x^{2}+7x+10.}}}

\bold\blue{\underline{\underline{Solution:}}}

\sf{\implies{x^{2}+7x+10}}

\sf{Here, \ a=1, \ b=7 \ and \ c=10}

\sf{\frac{-b}{a}=-7}

\sf{Also, \ \alpha+\beta=-7}

\sf{\therefore{Sum \ of \ zeroes=\frac{-b}{a}}}

\sf{\frac{c}{a}=10}

\sf{Also, \ \alpha\beta=10}

\sf{\therefore{Product \ of \ zeroes=\frac{c}{a}}}

\sf{Hence, \ verified. }

Similar questions