Math, asked by VindyaNayak, 7 hours ago

find the quadratic polynomial whose zeroes are -2and -5 . verify the relationship between zeros and coefficients of the polynomial​

Answers

Answered by FiercePrince
31

Given that , The Quadratic Polynomial whose zeroes are -2 & -5 .

Need To Find : The Quadratic Polynomial & verify the relationship between zeros and coefficients of the polynomial ?

━━━━━━━━━━━━━━━━━━━⠀

\qquad \qquad \underline{\pmb{\mathbb{\bigstar \:\:QUADRATIC \:\:POLYNOMIAL  \:\::\:}}}\\\\

  • The zeroes of Quadratic polynomial are : -2 & -5 .

\qquad \underline {\boxed {\pmb{ \:\maltese \:Sum \:\: of \:\:zeroes \:\:\purple{ \:(\: \alpha + \beta \;)\:} \:: \: }}}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:+\:\beta \:\Big\} \:\: \\\\\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\\\dashrightarrow \sf  \Big\{ \: \alpha \:+\:\beta \:\Big\}\:\:=\:\:\:\:\Big\{ -2 + (-5)\Big\}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:+\:\beta \:\Big\}\:\:=\:\:\:\:\Big\{ -2 -5\Big\}\\\\\dashrightarrow \sf \: \alpha \:+\:\beta \: \:\:=\:\:-7\\\\\dashrightarrow \sf \: \alpha \:+\:\beta \: \:\:=\:\:-7 \:\\\\\dashrightarrow \underline {\boxed {\pmb{\pink{ \frak { \: \alpha \:+\:\beta \: \:\:=\:\:-7 \:\:}}}}}\:\:\bigstar \\\\

AND ,

\qquad \underline {\boxed {\pmb{ \:\maltese \:Product \:\: of \:\:zeroes \:\:\purple{ \:(\: \alpha  \beta \;)\:} \:: \: }}}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:\:\beta \:\Big\} \:\: \\\\\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\\\dashrightarrow \sf  \Big\{ \: \alpha \:\:\beta \:\Big\}\:\:=\:\:\:\:\Big\{ -2 \times (-5)\Big\}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:\:\beta \:\Big\}\:\:=\:\:\:\:\Big\{ -2 \times -5\Big\}\\\\\dashrightarrow \sf \: \alpha \:\:\beta \: \:\:=\:\:10\\\\\dashrightarrow \sf \: \alpha \:\:\beta \: \:\:=\:\:10 \:\\\\ \dashrightarrow \underline {\boxed {\pmb{\pink{ \frak { \: \alpha \:\:\beta \: \:\:=\:\:-7 \:\:}}}}}\:\:\bigstar \\\\

As , We know that ,

\qquad \dag\:\:\bigg\lgroup \pmb{\sf \:Quadratic \:Polynomial\:\::\:x^2 \: - \:\{ \:Sum \:of \:zeroes \:\} x\:+ \:\{ \:Product \:of \:zeroes \} \:   }\bigg\rgroup \\\\

⠀⠀Here , Sum of Zeroes are α + β & Product of zeroes are α β

\qquad \dashrightarrow \sf \:Quadratic \:Polynomial\:\:=\:x^2 \: - \:\{ \:Sum \:of \:zeroes \:\}x \:+ \:\{ \:Product \:of \:zeroes \} \:  \\\\

\qquad \dashrightarrow \sf \:Quadratic \:Polynomial\:\:=\:x^2 \: - \:\{ \:\alpha + \beta  \:\}x \:+ \:\{ \:\alpha \beta  \} \:  \\\\

\qquad \underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\\\qquad \dashrightarrow \sf \:Quadratic \:Polynomial\:\:=\:x^2 \: - \:\{ \:\alpha + \beta  \:\}x \:+ \:\{ \:\alpha \beta  \} \:  \\\\\qquad \dashrightarrow \sf \:Quadratic \:Polynomial\:\:=\:x^2 \: - \:\{ \:-7  \:\} x\:+ \:\{ \:10  \} \:  \\\\\qquad \dashrightarrow \sf \:Quadratic \:Polynomial\:\:=\:x^2 \: + \:7x  \:+ \:10  \:  \\\\\qquad \dashrightarrow \underline {\boxed {\pmb{\pink{ \frak { \: \:Quadratic \:Polynomial\:\:=\:x^2 \: + \:7x  \:+ \:10  \:   \:\:}}}}}\:\:\bigstar \\\\

\qquad \therefore \:\underline{\sf The \:Quadratic \:Polynomial \:is \: \pmb{\bf  x^2 \: + \:7x  \:+ \:10\:}\:.}\\

━━━━━━━━━━━━━━━━━━━⠀

\qquad \underline {\bf \:\: \maltese \:\:\purple { Verification\: \:\:between \:it's \:zeroes \:and \:coefficient's \:\:relationship \:\::\:}}\:\\\\

\qquad \qquad \underline{\pmb{\mathbb{\bigstar \:\:QUADRATIC \:\:POLYNOMIAL  \:\:= \:x^2 \: + \:7x  \:+ \:10\:}}}\\\\

\qquad \underline {\boxed {\pmb{ \:\maltese \:Sum \:\: of \:\:zeroes \:\:\purple{ \:(\: \alpha + \beta \;)\:} \:: \: }}}\\\\\dashrightarrow \sf \bigg( \: \alpha \:+\:\beta \:\bigg) \:\:=\:\:\dfrac{\:-\:(\:Cofficient\:of \:x\:)}{Cofficient \:of \: x^2 \:}\\\\\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\\\dashrightarrow \sf \bigg( \: \alpha \:+\:\beta \:\bigg) \:\:=\:\:\dfrac{\:-\:(\:Cofficient\:of \:x\:)}{Cofficient \:of \: x^2 \:}\\\\\dashrightarrow \sf \bigg( \: -7\:\bigg) \:\:=\:\:\dfrac{\:-\:(\:7\:)}{\:1 \:}\\\\\dashrightarrow \sf \: -7 \: \:\:=\:\:\dfrac{\:-\:7\:}{\:1 \:}\\\\\dashrightarrow \sf \:  \: -7 \: \:\:=\:\:-7 \:\\\\\dashrightarrow \underline {\boxed {\pmb{\pink{ \frak { \: -7 \: \:\:=\:\:-7 \:\:}}}}}\:\:\bigstar \\\\

\qquad \underline {\boxed {\pmb{ \:\maltese \:Product \:\: of \:\:zeroes \:\:\purple{ \:(\: \alpha  \beta \;)\:} \:: \: }}}\\\\\dashrightarrow \sf \bigg( \: \alpha \:\:\beta \:\bigg) \:\:=\:\:\dfrac{\:Constant \:Term \:}{Cofficient \:of \: x^2 \:}\\\\\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\\\dashrightarrow \sf \bigg( \: \alpha \:\:\beta \:\bigg) \:\:=\:\:\dfrac{\:Constant\:Term \: }{Cofficient \:of \: x^2 \:}\\\\\dashrightarrow \sf \bigg( \: 10\:\bigg) \:\:=\:\:\dfrac{\:10}{\:1 \:}\\\\\dashrightarrow \sf \: 10 \: \:\:=\:\:\dfrac{\:10\:}{\:1 \:}\\\\\dashrightarrow \sf \: 10 \: \:\:=\:\:10 \:\\\\\dashrightarrow \underline {\boxed {\pmb{\pink{ \frak { \: 10 \: \:\:=\:\:10 \:\:}}}}}\:\:\bigstar \\\\

\qquad \underline {\pmb{\bf Hence, \:Verified \:!\:}}\\

Answered by itzyadu
4

Answer:

u too

have a sweet dream❤️

Similar questions