Math, asked by zithbear4880, 1 month ago

Find the quadratic polynomial whose zeroes are -4 snd3 by 2

Answers

Answered by SparklingBoy
62

-------------------------------

♣ Given :-

For a Quadratic Polynomial

   

  • First Zero = - 4

  • Second Zero = 3/2

-------------------------------

♣ To Find :-

  • The Quadratic Polynomial.

-------------------------------

♣ Key Point :-

If sum and product of zeros of any quadratic polynomial are s and p respectively,

Then,

The quadratic polynomial is given by :-

 \bf  {x}^{2}  - s \: x + p

-------------------------------

♣ Solution :-

Here,

Sum = s = - 4 + 3/2 = - 2/5

Product = p = - 4 × 3/2 = - 6

So,

Required Polynomial should be

  \bf{x}^{2}  - \bigg(-\dfrac{2}{5} \bigg)x + (-6).

 \Large\purple{:\longmapsto\pmb{5 {x}^{2}  +2x -30}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

-------------------------------

Answered by pushkardigraskar2005
0

Answer:

Here's your answer

Step-by-step explanation:

Given => let one zero be α=-4

               let other zero be β=3/2

So,ACC to the ques

We have to form a quadratic polynomial

So,

(α+β)=-4+3/2

       = -8+3/2

        = -5/2

(αβ) = -4*3/2

       = -12/2

        = -6

Now ,

p(x)=K[x^2-(α+β)x-(αβ)]

p(x)=K[x^2-(-5/2)x-(-6)

Taking 2 from -5/2 at the place of K

p(x)=2[x^2+5x+6]

So,our final quadratic polunomial will be,

p(x)=2x^2+10x+12

Hope you understand.

Similar questions