Math, asked by abdallehumaam, 7 days ago

find the quadratic polynomial whose zeroes are 5 and -3​

Answers

Answered by amansharma264
5

EXPLANATION.

Quadratic polynomial whose zeroes are 5 and - 3.

As we know that,

Sum of the zeroes of quadratic polynomial.

⇒ α + β = - b/a.

⇒ 5 + (-3) = 2.

⇒ α + β = 2.

Products of the zeroes of quadratic polynomial.

⇒ αβ = c/a.

⇒ (5) x (-3) = - 15.

⇒ αβ = - 15.

As we know that,

Formula of quadratic polynomial.

⇒ x² - (α + β)x + αβ.

Put the values in the equation, we get.

⇒ x² - (2)x + (- 15).

x² - 2x - 15 = 0.

                                                                                                                       

MORE INFORMATION.

Nature of the roots of quadratic expression.

(1) Roots are real and unequal, if b² - 4ac > 0.

(2) Roots are rational and different, if b² - 4ac is a perfect square.

(3) Roots are real and equal, if b² - 4ac = 0.

(4) If D < 0 Root are imaginary and unequal Or complex conjugate.

Similar questions