Math, asked by ashi77735, 11 months ago

find the quadratic polynomial whose zeroes are log 1000,log 0.01 0.1​

Answers

Answered by CunningKing
6

GiVeN :-

\sf{log1000\ and\ log_{0.1} 0.01\ are\ the\ zeros\ of\ a\ quadratic }\\\sf{ polynomial.}

To DeTeRmInE :-

\sf{The\ quadratic\ polynomial\ whose\ zeros\ are\ given.}

SoLuTiOn :-

\sf{We\ know,}

\textsf{For a log with no base, the base is considered to be 10.}

\sf{Ex :-}  \sf{log\ x=log_{10}x}

\sf{log_1_0 1000=3}

\sf{(As\ 10^3=1000)}

\sf{log_0_._10.01=log_{\frac{1}{10} }\frac{1}{100} =2}

\sf{[As\ (\dfrac{1}{10})^2 =\dfrac{1}{100} ]}

\sf{Hence,\ the\ zeros\ are\ 3\ and\ 2.}

\rule{140}2

\bullet\ \sf{Sum\ of\ the\ zeros,\ S=3+2=5}\\\\\bullet\ \sf{Product\ of\ the\ zeros,\ P=3\times2=6}

\sf{A\ quadratic\ equation\ is\ of\ the\ form:-}\\\sf{x^2-(S)x+P}

\sf{The\ required\ polynomial\ is:-}

\large\boxed{\sf{x^2-5x+6}}

Similar questions