Math, asked by gowtham3064, 10 months ago

find the quadratic polynomial whose zeroes are log5 to base25 log3 to base 27​

Answers

Answered by ihrishi
3

Step-by-step explanation:

Let the zeros of the quadratic polynomial be  \alpha \: \beta

 \therefore \:  \alpha  = log_{25} 5 =  \frac{log \: 5}{log \: 25} \\  =  \frac{log \: 5}{log \:  {5}^{2} }  \\=  \frac{log \: 5}{2 \: log \: 5} = 2 \\  \implies \:  \alpha  = 2 \\  \beta  = log_{27} 3   =   \frac{log \: 3}{log \: 27} \\  =  \frac{log \: 3}{log \:  {3}^{3} }  \\=  \frac{log \: 3}{3 \: log \: 3} = 3\\  \implies \:  \beta = 2 \\ now \: required \: polynomial \: is :  \\  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  \\  =  {x}^{2}  - (2 + 3)x + 2 \times 3 \\  =  {x}^{2}  - 5x + 6

Similar questions