Math, asked by student888444, 11 months ago

find the quadratic polynomial whose zeroes are root 3+root5 and root5-root3​

Answers

Answered by rakhithakur
1

Step-by-step explanation:

roots are

 \frac{ 3 + \sqrt{5} }{5}  \:  \:  \:  \: and \:  \:  \:  \:  \frac{3 -  \sqrt{5} }{5}

product of roots are

 (\frac{3 +  \sqrt{5} }{5} )( \frac{3 -  \sqrt{5} }{5} ) \\  =  \frac{9 - 5}{25}   \\  =  \frac{4}{25}

sum of the roots are

 \frac{3 +  \sqrt{5} }{5}  +  \frac{3 -  \sqrt{5} }{5}  =  \frac{3}{5}

quadratic equation is given by

 {x}^{2} - (sum \:  of  \: roota ) + (product \: of \: roots) = 0

 {x}^{2}   -  \frac{3}{5} x +  \frac{4}{25}  = 0

 {25x}^{2}  - 15x + 4 = 0

 {\red {hope \: you \:  \ like \: it}}

Similar questions